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NOMENCLATURE 

a crack length 

ac critical crack length 

A area 

Ae effective surface area based on the PIA model 

An series constant in the anisotropic, plate displacement solution 

AT total surface area 

AF anisotropy factor 

b width of a plate 

bij reduced elastic stiffness 

B width of a uniaxial flexure (beam) specimen 

Bn series constant in the anisotropic, plate displacement solution 

c free surface half-length of an elliptical crack 

C contour for unit circle integration 

Ci constants in the anisotropic displacement stress solution 

Cij elastic stiffness 

CVi coefficient of variation of the ith variable 

d gage section diameter 

D half-width of a composite tensile specimen 

Dij flexural rigidities  

D* effective flexural rigidity of an anisotropic plate 

NASA/TM—2002-210519 xvi 



 

D*cubic effective flexural rigidity of a cubic plate 

e eccentricity of two cylinders 

E Young’s modulus 

f(θ) failure criterion written in terms of a unit, uniaxial principal stress 

fa probability density function 

fi arbitrary function used in the displacement solution of an anisotropic plate 

F applied force 

FC failure criterion 

FCc critical value of a failure criterion for a materials resistance to unstable crack propagation  

G shear modulus 

GI mode I strain energy release rate 

GIc critical, mode I strain energy release rate 

h the ratio of the major to minor axes of an elliptical cavity 

( )H σ  step function to account for compressive stresses  

Ii scale parameter invariant 

ki reduced flexural rigidity 

kt transverse sensitivity of a strain gage 

kwps polyaxial crack density coefficient 

wpsk  average polyaxial crack density coefficient 

kws uniaxial crack density coefficient 

wsk  average uniaxial crack density coefficient 

k* effective, reduced flexural rigidity of an anisotropic plate 
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k*cubic effective, reduced flexural rigidity of a cubic plate 

KI mode I stress intensity factor 

KI mode I fracture toughness 

KII mode II stress intensity factor 

KIII mode III stress intensity factor 

l length of the edge of a square plate (e.g. a biaxial test specimen) 

m Weibull modulus 

Mo applied moment 

N crack density for a volume element 

Nt  safety factor for the tensile conditions considered 

Nc safety factor for the compressive conditions considered 

m
nN  ratio of normal stress to strength averaged about the unit circle 

cap  probability of a single crack being critical 

θ,Ap  probability of a single crack being in a location and having a particular orientation 

Pe probability of a crack existing 

PFA probability of failure for surface flaws 

PFV probability of failure for volume flaws 

PFx probability of failure for flaw population x 

q pressure  

r radial position in a biaxial disk test specimen 

rp radius of an anisotropic biaxial disk test specimen 

R correlation coefficient for linear regression 

NASA/TM—2002-210519 xviii 



 

Rc cross sectional radius of load ring used in ring-on-ring biaxial testing 

Rd  radius of an isotropic plate (e.g. an isotropic biaxial disk test specimen) 

Ri radius of inner (load) ring of ring-on-ring biaxial test fixture 

Rn reliability of a component with n cracks 

Ro radius of outer (support) ring  

Rs  radius of support ring in pressure-on-ring test fixture 

S surface for unit sphere volume integration 

Si inner span of a four-point flexure test 

So outer span of flexure test 

Sij elastic compliance 

Sucs ultimate strength in compression 

Suts ultimate strength in tension 

Flex
UTSS  ultimate strength in uniaxial flexural 

POR
UTSS  ultimate biaxial strength of an isotropic material as determined by pressure-on-ring 

loading 

POR
cubic,UTSS  ultimate biaxial strength of an anisotropic material with cubic symmetry as 

determined by pressure-on-ring loading 

SDxi standard deviation of the xi variable 

t biaxial disk test specimen thickness 

T torque 

V volume 

VT total volume 
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w plate deflection in the z direction 

wo particular solution for the displacement of an anisotropic plate 

W height of a uniaxial flexure (beam) specimen  

x abscissa as measured from the center of a plate or rod 

x  location on surface  

y ordinate as measured from the center of a plate or rod 

z distance from mid-surface of the plate ranging over ± t/2  

YI mode I stress intensity factor coefficient 

YII mode II stress intensity factor coefficient 

χ ratio of tensile Weibull modulus to compressive Weibull modulus 

εp measured major principal strain component 

εq measured minor principal strain component 

qε̂  measured minor principal strain uncorrected for transverse sensitivity 

pε̂  measured major principal strain uncorrected for transverse sensitivity 

εx strain in the x direction 

εy strain in the y direction 

iε̂  measured strain uncorrected for transverse sensitivity; i = 1,2,3 

φ angle from the xy plane  

ϕ counter clockwise angle from the x axis 

Φ phase angle between the <100> crystal direction and the principal stress 

γxy shear strain in the xy plane 
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γf the fracture surface energy  

Γ(1/m) the gamma function of 1/m 

η ratio of tensile strength to compressive strength  

ϕ counterclockwise angle from the x axis 

µ  coefficient of friction 

µi complex root  

ν Poisson’s ratio 

νo Poisson’s ratio of strain gage manufacturer’s calibration material 

θ angle from the first principal stress 

Θ angle from the <100>direction 

σb stress due to bending 

σcr critical stresses for flaw failure 

σeq equivalent stress 

σemax maximum effective stress (Batdorf model) 

)i(
fvσ  average unit volume strength in the direction of the i principal stress 

σi ith principal stress (i = 1,2, or 3) 

σij Cartesian stress component 

σIeq mode I equivalent stress 

σMAX maximum stress 

σm minimum strength in the Weibull distribution 

σn normal stress on the crack plane  
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σn<hkl>  the normal stress in the <hkl> direction  

σo scale parameter or unit strength 

σo<hkl> scale parameter in the <hkl> crystal direction. 

σp measured major principal stress  

σq measured minor principal stress  

σt tensile stress 

σθ characteristic strength (i.e. strength for a 62 % probability of failure in the Weibull 

distribution) 

σrr radial stress 

σθθ tangential stress 

σrθ shear stress 

σs correction term for the effect of lateral stresses on plate deflection 

σx stress in the x direction 

σy stress in the y direction 

σ* critical tensile stress at the surface of an elliptical flaw 

τ shear stress resolved on the crack plane 

τxy shear stress in the xy plane 

ξ twist per unit length 

Ω solid angle 

Ψ scalar reliability function for whisker reinforced ceramics 
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ABBREVIATIONS 

BGC Batdorf’s criterion for a Griffith crack 

BGN Batdorf’s criterion a Griffith notch 

CERR coplanar energy release rate 

EDM electro-discharge machining 

MHSF maximum hoop stress factor 

MP maximum principal stress 

NERR non-coplanar energy release rate 

NS normal stress 

PIA principle of independent action 

P-O-R pressure-on-ring 

SIFC stress intensity factor coefficient 

R-O-R ring-on-ring 
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CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND ON NICKEL ALUMINIDES 

The efficiency and lifetime of a turbine engine component is limited by the ability of the material 

comprising the component to sustain stress at elevated temperatures.  In order to increase the 

turbine operating temperature and improve the efficiency, traditional turbine component alloys 

have been improved and a variety of non-traditional or advanced material systems (e.g. ceramics, 

intermetallics and composites) have been developed and investigated (Molloy 1990).  Advanced 

material systems may exhibit an effect of test specimen dimensional scale on mechanical 

properties (e.g. ceramics), or anisotropy on both macro and micro scales (e.g. laminated 

composites) because the materials are no longer homogeneous isotropic mediums but structures.  

Design methodologies for traditional turbine alloys generally do not address such considerations, 

and thus new design methods need to be developed as non-traditional materials emerge and are 

considered viable for engine applications. 

 

A variety of alloys of intermetallic composition have been developed (e.g. NiAl, TiAl, Ti3Al, Nb3Al 

and MoSi2) in an attempt to further increase the operating temperature of turbine engines (Ashley 

1991, Sauthoff 1995).  Intermetallics have a unique atomic ordering that can result in congruent 

melting and unique properties.  Nickel aluminide (NiAl) intermetallics, in particular, have low 

density, high thermal conductivity and high oxidation resistance as compared to nickel-based 

superalloys such as René′ N5, Table 1.1.1 (Walston and Darolia 1993).  A detailed review of the 

physical properties of intermetallic NiAl’s has been given by Noebe et al. (Noebe et al. 1993). The 

term “NiAl” will be used to refer generically to any compound in the B2 NiAl phase field.  

 

The beneficial properties listed in Table 1.1.1 make NiAl alloys possible candidates for turbine 

applications.  A further step used to improve the elevated temperature capabilities of NiAl’s has 

been the application of the creep limiting mechanisms used to improve the elevated temperature 

capabilities of traditional nickel-based alloys.  A variety of mechanisms have been used to 

improve the creep resistance of traditional alloys used in turbine engines.  One mechanism is the 
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precipitation of second phase particles throughout the matrix via modification of alloy composition 

and heat treatment.  The second phase particles inhibit dislocation motion and the resulting creep 

deformation.  Another improvement in traditional turbine engine alloys that occurred after the 

development of second phase precipitates was the generation of single crystal materials, which 

have been used in turbine engines for a decade.  The improved creep resistance of single crystal 

superalloys results from the lack of grain boundaries, which act as sites for accelerated creep 

deformation.  As a result of these improvements, the creep resistance of turbine alloys has 

improved substantially, thereby allowing an increase in turbine temperatures as shown in Figures 

1.1.1 and 1.1.2.  However, such improvements in elevated temperature capability are ultimately 

limited by the melting point of the alloy system and materials systems with higher melting points 

are desired (Fischer and Webster 1990). 

 

The application of traditional creep limiting mechanisms (e.g. precipitation of a second phase in a 

single crystal) to intermetallics has resulted in single crystal NiAl alloys that are ideal candidates 

for turbine applications with one serious exception: a lack of` ductility stemming from the limited 

dislocation motion and contaminant creep resistance.  The room temperature fracture toughness 

of binary polycrystalline NiAl is on the order of 4 to 6 MPa√m (Noebe et al. 1993), and 8.7 ± 0.7 to 

10 MPa√m and 4.4 ± 0.4 MPa√m for the {100} and {110} planes1 of single crystals, respectively 

(Chang et al. 1992, Reuss and Vehoff 1991).  Thus, these alloys “are not currently used in aircraft 

engines because room temperature fracture toughness and ductility are not high enough to allow 

assembly and maintenance operations” (Blankenship et al. 1995). 

 

Further, because of the low fracture toughness of single crystal NiAl, the strength of NiAl may 

dependent on the surface finish and the flaw size distribution throughout out the microstructure.  

Thus the fracture characteristics of some alloys are probably similar to those of classical brittle 

materials such as ceramics and glasses with two exceptions: elastic anisotropy, fracture 

toughness anisotropy and limited but possibly significant plastic deformation under specific 

conditions such as pure compression (Noebe et al. 1993).  

 

                                                           
1 Conventional Miller indices and notation are used to describe crystallographic planes and 

directions in this dissertation:  (hkl) defines a specific crystal plane; {hkl} defines a family or group 

of identical crystal planes except for the arbitrary choice of the x-, y-, and z-labels on the axes.  

Similarly, [hkl] and <hkl> correspond to specific directions and families of directions, respectively 

(Van Vlack 1975).  
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The lack of grain boundaries in single crystal NiAl results in a continuum, as in glass.  However, 

the presence of a crystal structure and flaws such as coarse precipitates, inclusions, pores, etc. 

should create a material more similar to a monolithic ceramic.  Also, because the material is a 
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Figure 1.1.1: Temperature capabilities of superalloys: temperature for 100-

hour life at a 140 MPa stress (Molloy 1990). 
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Figure 1.1.2: Temperature capabilities of superalloys and ceramics: blade 

surface temperature (courtesy H.R. Gray, NASA GRC). 
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single crystal, the fracture toughness varies with orientation, as noted previously, and a 

preferential fracture path(s) or cleavage plane(s) exists.  This results in an anisotropic strength 

distribution. 

 

It should be noted that low fracture toughness has not eliminated materials from application in 

turbine engines.  In the case of ceramics, viable turbines vanes and nozzles in ground based 

auxiliary power units were achieved through better processing, machining, and handling that 

made the components stronger and more reliable, and through reliability analysis that accounted  

 

 

 

Table 1.1.1: Physical properties of NiAl, NiAl alloys and an advanced superalloy (Walston and 

Darolia 1993). 

 

 

Property 

 

Units 

 

Temp, 
o C 

 

NiAl 

 

NiAl alloys[1] 

Advanced 

Superalloy 

Bonding   Covalent/Metallic Covalent/Metallic Metallic 

Melting Point oC  1682 1610-1676 1390 

Density g/cm3 RT 5.9 up to 6.30 8.60 

Young’s Modulus, Polycrystal GPa RT 188 188 205 

Young’s Modulus - <100> GPa RT 88 88 130 

Anisotropy Factor  RT 3.25 ∼3.25[2] 2.72 

Shear Modulus, Polycrystal GPa RT 71.5 ∼71.5[2] 74 

Poisson’s Ratio  RT 0.313 ∼0.313[2] 0.380 

Thermal Expansion 10-6 /oC 600 13.2 13.7 13.5 

Specific Heat J/goC 600 0.64 0.61-0.64 0.46 

Thermal Diffusivity cm2/sec 600 0.22 0.1-0.22 0.033 

Thermal Conductivity W/moC 600 76 35-76 15 

Electrical Resistivity µohm.cm RT 8-10 10-30 120-140 

[1] NiAl alloys containing primarily β‘ precipitates and less than 5 atom percent alloying additions. 

[2] Estimated assuming no effect of alloying on the elastic constants. 
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for the wide dispersion in strength (Schenk 1999, Price 1999).  In the specific case of silicon 

nitrides, continued research on processing routes that elongate the grain structure and thereby 

provided “in situ toughening” have nearly doubled (5 MPa√m vs 8 MPa√m) the fracture toughness 

(Li and Yamanis 1989), further encouraging applications of what is a low fracture toughness 

material. 

 

Thus, presuming maintenance and assembly operation can be sufficiently modified, the use of 

NiAl single crystals in turbine applications, such as vane and blades, will require component 

design methods that consider the elastic and strength anisotropy, the brittle behavior and the 

possibility of a wide size distribution of surface and volume distributed flaw populations. 

1.2 PROBLEM STATEMENT 

The guiding objective of this work is to further the knowledge and understanding of the failure of 

anisotropic, brittle materials and to develop component design capabilities for such materials.  

The overall goal of this dissertation follows:  

 

Develop and verify a model for the structural design of anisotropic, brittle monoliths such as single 

crystal NiAl. 

 

Specific objectives comprising this goal are as follows. 

1.3 OBJECTIVES 

(1) Determine the elastic constants of the material. 

 

(2) Determine the mode of failure and the source, composition and structure of strength limiting 

defects.    

 

(3) Measure the uniaxial and biaxial strengths of the material for relevant crystal orientations. 

 

(4) Determine the appropriate statistical distribution for characterization of the materials strength.  

Develop appropriate reliability model and failure criterion. 

 

(5) Verify the model and criterion. 
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CHAPTER 2: REVIEW OF THE PREVIOUS WORK 

2.1 FRACTURE OF BRITTLE, SINGLE CRYSTALS 

Brittle single crystals such as sapphire, diamond, mica, etc. frequently fracture along specific 

planes defined by the crystal structure, even when the externally applied stresses are not a 

maximum on the specific planes.  This phenomenon is referred to as cleavage and implies “that, 

other things being equal, cracking will proceed along the cleavage plane” (Fre′chette 1990).  The 

extent or quality of cleavage is typically described as “perfect, good, distinct or indistinct,” and is a 

result of both the nature of the crystal and the applied stress state.  When the stress state is 

sufficiently misaligned, even crystals with a distinct cleavage plane will exhibit a ‘conchoidal’ 

fracture surface, or “that is, forming fracture surfaces fancied to resemble certain sea shells” 

(Fre′chette 1990).  Some crystals, such as quartz, SiO2, do not exhibit a distinct cleavage. 

Polycrystalline materials and materials without a microstructure, such as glass, fracture 

conchoidally with the fracture features being controlled by the stress state and crack dynamics. 

  

Although cleavage has been described as “the separation of atomic planes in the absence of any 

plastic flow” (LeMay 1981), some semi-brittle metals and non-metals exhibit large dislocation 

densities and regions of stable crack growth on the ‘perfect’ cleavage plane.  This behavior is a 

function of temperature and strain rate (Hirsch et al. 1992). 

 

For ionic and covalently bonded single crystals, the cleavage plane was thought to be best 

predicted by a fracture energy criterion (Schultz et al. 1994, Hayashi 1982): 

 

IccrIcf GaEK === πσγ 222 /      (1) 

 

where γf is the fracture surface energy, GIc is the mode I strain energy release rate, KIc  is some 

measure of the mode I fracture toughness and E is the elastic modulus in the direction of interest.  

Note however, that Equation (1) is an approximation of the energy release rate for an anisotropic 

material.  For collinear crack extension, the conversion of the stress intensity factor into fracture 

energy for an orthotropic system should be done using (Sih and Leibowitz 1967) 
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where the Sij’s are the single crystal elastic constants (compliance’s), KI  is the mode I stress 

intensity factor and GI is the mode I strain energy release rate. In the case of a cubic system such 

as NiAl, S11 = S22 and S44 = S66.  Self-similarity was invoked in deriving the equation and thus the 

crack must coincide with one of the principal axes of material symmetry (Sih 1979).   

 

Note that there are two different formulations of Equation (2) published in two different works (Sih 

and Leibowitz 1967 and Sih 1979).  The later publication (Sih 1979) of this formulation does not 

include the π term and S66 is replaced by S22.  This is a result of the form of the stress intensity 

factor chosen in the derivation.   

 

Although the above solution is for the principal axes of material symmetry, Yoo and Fu (Yoo and 

Foo 1991) applied Eq. (2) to a {110} orientation of NiAl, which though not the principal axis of 

elastic symmetry is a plane of elastic symmetry.  They calculated the theoretical stress intensity 

factor from theoretically derived energy release rates.  Because the tensor for such a 

transformation is less populated than an orthotropic matrix, Eq. (2) should be applicable.  Also, 

they applied Eq. (2) to the {100}, which is the principal plane of symmetry, however, it has been 

reported that collinear crack extension does not occur (100) (Chang et al. 1992). Note that 

collinear crack extension typically only occurs on the cleavage plane. 

 

Metallically bonded materials are less prone to distinct cleavage because of the plastic flow 

allowed by the metallic bonding.  However, iron, low carbon steel, tungsten, molybdenum, 

chrome, (all body centered cubic) and zinc, beryllium and magnesium (all hexagonal close 

packed) exhibit cleavage under the appropriate conditions.  Although a stress criterion is implied 

by Broek (Broek 1982) for describing metallic cleavage, NiAl has a combination of covalent and 

metallic bonds and thus a fracture mechanics based energy criterion might be the most 

appropriate.  Further, if small flaws exist, the reliability analysis of NiAl materials should be 

fracture mechanics based instead of based purely on strength relations. 
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2.2 CLEAVAGE OF NiAl SINGLE CRYSTALS 

Cleavage of NiAl has been studied in some detail (Chang et al. 1992, Vehoff 1992).  Pascoe and 

Newey (Pascoe and Newey 1968) reported that cleavage of a NiAl single crystal tested in 

compression occurred on the {110}. 

 

Chang et al. used electro-discharge machining (EDM) notched four-point flexure specimens to 

estimate fracture toughness and determine the cleavage plane of various NiAl alloys.  For binary 

NiAl, the fracture toughness and standard deviations on the {100}, {110}, and {111} families of 

planes were 8.28 ± 0.73, 4.53 ± 0.44, and 5.00 ± 0.16 MPa√m, respectively, implying a {110} 

cleavage plane.  The fracture plane of the {100} specimens turned away from the notch plane and 

macroscopically aligned itself with the {110}, whereas the crack path was macroscopically 

coplanar for the {110} specimens, again implying {110} cleavage.  It should be noted that Chang’s 

fractograph’s (Figure 6(a), pp. 2732) indicate that failure may have occurred from a point along 

the notch front rather than from the whole notch front in a quasi-static fashion as is assumed in 

calculation of the stress intensity factor.  Such unstable fracture in four-point flexure can results in 

small errors in the calculated fracture toughness (Baratta and Dunlay 1990).  However, little 

scatter is apparent in the data via the standard deviations listed above, and the data thus seems 

to illustrate the relative toughness of the planes reasonably.  Another complication with Chang’s 

data is the statement “the maximum load was used to calculate the fracture toughness, Kc, 

according to the equation ASTM E399.”  The American Society for Testing and Materials (ASTM) 

Test Method E 399 (ASTM E 399 1995) makes no provision for fracture toughness calculation 

from four-point bend tests or from maximum load unless specific conditions are fulfilled.  

 

Although Chang (Chang et al. 1992) concluded that the {110} was the cleavage plane, they 

observed {511} transition planes at the tip of {110} EDM notched specimens.  The occurrence of 

{511} transition planes were also noted by Bain and Darolia (Bain and Darolia, unpublished work 

that is reported in Chang et al. 1992) on the fracture surfaces of {100} chevron-notched flexure 

specimens, and on the surfaces of smooth strength specimens which also showed {110} facets 

and other high indices facets (Chang et al. 1992).  However, on a low fracture toughness NiAl 

alloy (Ni-46Al, Kc = 3.05 ± 0.06 MPa√m for (110)<001>), no transition planes were observed 

(Chang et al. 1992).  Although no specific explanation for the transition planes was given, it seems 

that the planes result from the crack dynamics and energy and constraint conditions at fracture.  

In the low fracture toughness material, the energy at failure can be dissipated without transition of 

the crack path onto planes such as the {511}.  However, in the alloy with greater fracture 

toughness, the conditions at fracture were apparently sufficient to cause the crack to follow 
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multiple paths.  In the {100} chevron-notched specimens (of the high fracture toughness alloy), the 

{511} transition planes occur because the crack can macroscopically follow the high toughness 

{100} notch plane, which it is macroscopically constrained via the notch, by transiting locally to 

{511} planes.  A substantially greater fracture toughness measurement resulted.  Chevron-notch 

measurements of the {110} were in good agreement (4.61 MPa√m) with EDM notched data, 

implying equivalence, and no {511} transition was noted.  The stable crack growth generated by 

the chevron notch probably kept the energy condition such that {511} transition was not necessary 

for energy dissipation.  The materials tested by Bain and Darolia (Bain and Darolia unpublished 

work) are an early version of the material studied in this research. 

 

DeMarco and Ardell (deMarco and Ardell 1996) concluded that neither the {100} nor the {110} 

were the preferred cleavage planes, but probably the {511} or {711} were, based on the work of 

Daroila et al. (Darolia et al. 1993) and Schneibel et al. (Schneibel et al. 1993).  Note that the {110} 

is close to the {511} and {711}.  In order to determine the cleavage plane, they indented 300 µm 

thick 3 mm diameter disks with a Vickers indentor at a substantial force of 5 kg such that the 

corners of the indentor were aligned with the [011] and the [100] directions.  The disks were then 

loaded in biaxial flexure between to concentric rings, thus aligning the tangential stresses on the 

classical (100) and (011) cleavage planes.  They assumed equal probability of failure on all 

tangential or radial planes, which, as they note is not the exact case for an anisotropic disk.  The 

stresses should be greater in the stiff crystallographic directions because the rings tend to enforce 

a displacement boundary condition and the stiff directions resist deflection the most.  Further, the 

probability of failure is not only proportional to the stress, but to the ratio of stress relative to 

strength in the particular direction. Thus the probability of failure should be greater for the {110} 

plane because it has low fracture toughness and strength and is twice as stiff as the (100).  Stress 

analysis might help clarify the results.  Note that the disks used were “thick” for the range of plate 

theory (Diameter/thickness = 10) and significant shear may have developed through the section 

thickness (Adler 1991).   

 

Crack extension occurred initially on the macroscopic (100) plane.  However, no distinct (100) 

facets were visible or identifiable on the surfaces, implying that the (100) was not the cleavage 

plane, but a plane near the (100) such as the {511} or {711} planes.  Note that the published 

fractographs of (100) fracture surfaces look like typical fracture surfaces in which a stress wave 

has interacted with the extending crack (i.e. conchoidal fracture), as would be expected for an 

isotropic material or an unfavorable orientation.  Note that 5 kg is a very large indentation load for 

a 300 µm thick disk and may have induced sever deformations and residual stresses that may 

 

have influenced the results, particularly if the deformation was anisotropic.  
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Figure 2.2.1: The {110} dodecahedral family of surfaces. 
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After the initial crack extension on the (100), the test specimens were loaded until a second failure 

occurred.  As the stresses on the (100) were probably partially relieved, failure occurred near but 

not exactly on the (011) from the corner of the indentation (i.e. near 90o to the first failure).  

Although large, flat surfaces resulted, no specific facets could be identified.  Because the stress 

and deformation state of such a case is complex, a clear conclusion from these results is difficult.  

Deformation and strain energy may have driven the crack plane off the expected cleavage plane.  

The use of a more uniform stress concentration (e.g. spherical) or precrack along with stress 

analysis might have given clearer results. 

 

The conclusion by Chang et al. that {110} is the cleavage plane of NiAl and that other high index 

planes such as the {511} form as a result of energy conditions and crack dynamics is in 

agreement with results presented in section 5.4.4.  The {110} set of planes forms the 

dodecahedral surface shown in Figure 2.2.1. 

2.3 ANISOTROPIC FRACTURE MECHANICS 

As shown in section 2.2, the effects of anisotropy in fracture mechanics and energy release rate 

calculations are occasionally ignored either because of lacking information (e.g. elastic constants) 

or inattention to detail.  Sih et al. (Sih, Irwin and Paris 1964) demonstrated that stress intensity 

factor solutions for isotropic and orthotropic materials are identical for infinite plates with 

symmetric and asymmetric self-equilibrating loads.  Also, for finite rectangular test specimens of 

sufficient length subjected to tension or pure bending, the effects of orthotropic elastic properties 

are only marginal for a material such as wood with Ex:Ey = 20:1 when tested along or across the 

grain (Walsh 1972).  A “sufficient length” is a length-to-width ratio of approximately 6:1 to 8:1 or 

greater.  The standard flexure test specimen for strength testing of ceramics (ASTM C 1161 

1990) is frequently used for fracture toughness testing (e.g. ASTM C 1421 1999).  It has a 

constant moment section of 20 mm, a support span of 40 mm and a width of 4 mm when turned 

on edge, giving a ratio 10:1.  Thus, standard flexure test specimens would be of “sufficient length” 

to avoid error when tested on the standard axes.  Further, NiAl is substantially less anisotropic 

than common woods. 

 

For more general cases of anisotropy (i.e. for a crack is located off the axis of elastic symmetry in 

an orthotropic material), Kanninen writes (Kanninen and Popelar 1985) “the stress intensity 

factors are in most practical cases just the same as for isotropic bodies.  In particular, except 
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when unbalanced loads act on the crack faces, the stress intensity factors will be independent of 

the materials constants and therefore will be identical to the K values derived in isotropic fracture 

mechanics.  This holds for each of the three possible modes of crack extension.”  However, 

Kanninen and Popelar note that one complication arises: “The difficulty in the anisotropic case is 

that crack extension will not necessarily occur in a planar fashion.  However, because the 

mathematical difficulties involved in treating angled cracks is prohibitive, this complication is 

usually ignored.”  Thus, for brittle materials that exhibit small amounts of stable crack extension 

prior to catastrophic failure, the assumptions noted to be typically applied seem reasonable. 

 

With the assumption given above, the main complication remaining in generation of fracture 

mechanic data on single crystals is the effects for off-axis testing on the stress state and thus on 

the stress intensity factor.  However, as can be noted from the stress-strain compliance tensors 

below and the equation for the displacements of a beam subjected to pure bending, no twisting of 

the sections of cubic single crystals typically tested for cleavage energy should occur.  The 

tensors given in Equations (3a) to (3e) were calculated from standard transformation equations 

(Wortman and Evans 1965, Turley and Sines1971) The x1’ and x2’ axes are normal and parallel to 

the crack plane and growth direction specified below, respectively:  

 

( ) 001100  

 
[1.0428      -0.4210     -0.4210       0         0       0  ] 

[-0.4210      1.0428     -0.4210       0         0       0  ] 

[-0.4210     -0.4210      1.0428       0         0       0  ]                                                         (3a) 

[  0               0               0            0.892     0        0  ] 

[  0               0               0               0      0.892    0  ] 

[  0               0               0               0       0     0.892] 

 

( ) 001110  

 

[ 0.5339     0.0879    -0.4210        0        0        0    ] 

[ 0.0879     0.5339    -0.4210        0        0        0    ] 

[-0.4210   -0.4210     1.0427         0        0        0    ]          (3b) 

[0               0              0           0.8920     0        0    ] 

[0               0              0                 0    0.8920   0    ] 

[0              0               0                 0        0   2.9275] 
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( ) 101110  

 

[0.5339               -0.4210            0.0879            0.3739x10-5         0               0          ] 

[-0.4210               1.0428           -0.4210           -0.7477x10-5         0               0          ] 

[0.0879               -0.4210            0.5339            0.3739x10-5         0               0          ] 

[0.3739x10-5       -0.7477x10-5    0.3739x10-5     0.8920                 0               0          ]                 (3c) 

[0                         0                     0                      0                    2.9275    0.7477x10-5] 

[0                         0                     0                      0                    0.7477x10-5    0.8920] 

 

 

( ) 121110  

 

[0.5339          -0.0393          -0.2937         -0.4407           0            0        ] 

[-0.0393 .       0.3749           -0.1347          -0.1102          0            0        ] 

[-0.2937        -0.1347            0.6293           0.5509           0           0        ]                       (3d) 

[-0.4407        -0.11018          0.5509           2.0370           0           0        ] 

[0                   0                      0                   0                1.4009    -0.8814] 

[0                   0                      0                   0                -0.8814   2.4187] 

 

 

( ) 101111  

 

[ 0.3643         -0.0817      -0.0817          0             0.20356x 10-8         0         ] 

[-0.0817          0.5339      -0.25137        0            -0.4798                   0          ] 

[-0.0817         -0.2514       0.5339          0             0.4798                    0         ]                (3e) 

[0                     0                 0                 1.5705    0                         -0.9596   ] 

[0.2036x10-8   -0.4799      0.4798          0             2.2491                    0          ] 

[0                     0               0                  -0.9596     0                          2.2491  ] 
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The displacement of a plate subjected to pure bending is given by (Whitney and Dauksys 1970, 

Ressner and Stavsky 1961) 

 

( ) ( ) ( )[ ]141414
2

3 22
1216

2
113

2

−+±+−= '''' yRSyxRSxS
h

lM
w o    (4) 

 

where t is the plate thickness, b the width, l the length and x’ = x/l, y’ = y/b and R = b/l.  The 

positive and negative signs in the second term are associated with S16 > 0 and S16 < 0, 

respectively.  At the corners of the plate (i.e. x’ = ± 1/2, y’ = ± 1/2) this reduces to 

 

[ ]RS
t

lM
w o

163

23±
=      (5) 

 

Because no S16 terms are present in the transformed tensors shown in Eqs. (3a) – (3e), “liftoff” 

(i.e. loss of contact) along the supports via twisting should not occur for cubic single crystal NiAl 

subjected to pure bending.  However, in bending configurations with shear (e.g. three and four-

point bending), shear-twist coupling will occur if S56 terms exists.  If bend twist coupling were to 

occur, fixtures that do not allow articulation of the load line could induce a shear stress and a 

mode III stress intensity factor on precracked specimens.  Such an effect would occur for the 

reported {511} transition plane because the tensor is fully populated, making direct measurements 

on such a plane difficult. 

2.4 MECHANICAL TESTING OF BRITTLE, ANISOTROPIC MATERIALS 

2.4.1 Elastic Properties 

The single crystal elastic constants of NiAl have been measure by for a variety of conditions and 

compositions (Wasilewski 1966, Rusovic′ and Warlimont 1977).  Wasilewski determined the room 

temperature elastic constants of 50.6 atom percent Al NiAl by resonance of cylindrical rods in 

longitudinal and torsional modes.  The reported constants were C11 = 211.5, C12 = 143.2, and C44 

= 112.1 GPa.  Note, that Wasilewski’s data in lbf/in
2 do not agree with his data in dyn/cm2 by 

~1.5%.  It appears that the data was measured in dyn/cm2 and converted to lbf/in
2 by a factor of 

6.995 instead of the accepted value (Mechtly 1973) of 6.895.  The values given in dynes/cm2 are 

presumed to be correct and used in the following calculations made in order to give a 
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crystallographic perspective to the moduli.  The elastic modulus varies from a minimum of 95.9 

GPa in the <100> to a maximum of 275 GPa in the <111> direction, with an intermediate value of 

187 GPa in the <110>, as shown in Figure 2.4.1.  Note also that Wasilewski reports a single value 

for the shear modulus of <110> specimens as determined by torsion of the {110} plane.  Actually, 

the shear modulus of the {110} plane is a function of direction, and value reported is the apparent 

value (Hearmon 1961) given by  

( )55442 SSG +=     (6) 

For the (100) and (111) planes, the shear modulus is not a function of direction and the values 

reported are representative of all directions in the specified plane. 

 

Rusovic′ and Warlimont used the pulse-echo technique with wave polarization to measure the 

constants for 50 atom percent Al NiAl.  The reported values were C11 = 198.5, C12 = 137.5, C44 = 

116 GPa, in reasonable agreement with Wasilewski. 

 

The elastic anisotropy factor ( )( 121144 CCC2AF −= ) ranges form 3.2 to 3.3 for this data.  This 

value is intermediate to other metallic single crystals such as aluminum which is nearly isotropic 

(A = 1.2), and β-Brass (A = 8.5) which is strongly anisotropic.  

2.4.2 Uniaxial Flexure Testing 

The requirements for uniaxial flexure testing of brittle materials have been studied in detail 

(Hoagland et al. 1976, Baratta et. al. 1987, Quinn 1990), and a frequently used standard test 

method exists (ASTM C1161 1990).  The standard does not address elastically anisotropic 

materials specifically, but does provide for an articulated fixture so specimens with as-processed 

tolerances, which are typically poor, can be tested.  Such a fixture might be capable of 

accommodating any bend-twist coupling encountered in a generally anisotropic beam, however, 

the effects can be severe (Whitney and Dauksys 1970).  Ideally, bend-twist coupling should be 

avoided by testing axes of symmetry.   

 

The standard also allows for three and four-point flexure of three different size specimens.  Thus, 

standard test specimens can be used in the determination of size effects on strength. 
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Figure 2.4.1: The elastic modulus E<hkl> of binary NiAl as a function of orientation 

in (a) the {100}, and (b) the {110}.  The single crystal elastic constants of 

Wasilewski (Wasilewski 1966) were used in the calculations. 
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Figure 2.4.2: Typical fracture pattern resulting from flexural failure of a brittle 

material (Military Handbook 790 1992).  
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Considering the ingot sizes that were available in this study, either the “A” (1.5 by 2.0 by 25 mm in 

height, width and length, respectively) or “B” (3.0 by 4.0 by 50 mm, respectively) specimens were 

usable.  For a wider range of test specimen sizes, a miniature test specimen can also be 

designed based on published recommendations (Hoagland et al. 1976, Baratta et. al. 1987, Quinn 

1990).  The advantages of flexural testing are, depending on one’s viewpoint, the small amount of 

required material, the simple geometry, the sensitivity to surface connected defects and the 

frequency of use in data measurement.  One major advantage borne out in these results is the 

asymmetric fracture pattern that results from the primary crack intersecting the compression side 

of the beam, as shown in Figure 2.4.2.  This pattern makes identification of the failure origin 

relatively easy, even when the test specimen fragments into dozens of pieces.  In contrast, tensile 

strength tests generating a uniform stress state typically produce many symmetric failures and the 

primary failure plane is very difficult to identify. 

2.4.3 Biaxial Flexure Testing  

Biaxial flexure testing has been studied in some detail (Rickerby 1977, Adler and Mihora 1991, 

Vitmar and Pukh 1963, Ritter et al. 1980, Shetty et al 1983) and at least one full consensus 

standard exists (ASTM F 394 1978).  Typically three different loading assemblies, shown in Figure 

2.4.3, are used to flex circular or square plates: ball-on-ring (B-O-R), ring-on-ring (R-O-R), and 

pressure-on-ring (P-O-R).  For model verification, the R-O-R or the P-O-R is typically used, as 

more of the test volume is subjected to large stresses.  Very little published work (DeMarco and 

Ardell 1996, Chen and Leipold 1985) on biaxial testing of single crystal plates is available in the 

open literature.  However, a review of the isotropic literature is useful as it points out some of the 

complications and interfaces to be avoided in the design of biaxial test rigs. 

 

The P-O-R has the advantage that no frictional or contact stresses are developed in the highly 

stressed regions, thereby avoiding a “spike” in the stress distribution.  However, friction will occur 

in P-O-R specimen at the support ring.  The frictional effects can be minimized by lubricating the 

support ring.  

 

The radial and tangential stresses are not equal except at the center of the disk, and thus 

somewhat less effective area is tested than with the R-O-R.  Rickerby (Rickerby 1977) developed 

a system that used a neoprene membrane to transmit pressure to the test specimen 

(diameter/thickness ≈ 17).  The reported radial and tangential stress were in excellent agreement 
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Figure 2.4.3: Schematic of the testing configurations used to generate biaxial 

tensile stresses in plate specimens: (a) ball-on-ring, (b) ring-on-ring, (c) 

pressure-on-ring and (d) top view of the pressure-ring configuration. 
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with plate theory at the disk center (<< 0.5% difference).  At 40 percent of the support radius the 

agreement was approximately 3.6 and 2.5 percent.  However at 80 percent of the support radius 

the differences were 25 and 2.4 percent, respectively.  The large difference in radial stress toward 

the edge of the specimen is less significant as the radial stresses is less than one-third of the 

maximum stresses and thus does not effect reliability as much. 

 

The biaxial test rig used by Shetty included a 0.25 mm spring steel membrane between the 

specimen (diameter/thickness ≈ 13) compressive surface and the pressure source (Shetty et al. 

1983).  Despite the presence of a membrane, the rig resulted in stresses in reasonable 

agreement with plate theory.  The measured stresses at the disk center were about 3.5% greater 

than the theoretical predictions.  The radial and tangential stresses were about 1.5 and 1.9% 

greater at 25% of the disk radius, and at 80% of the support ring the radial stress error was 10%.  

Reliability calculations are strongly dependent on the peak stress region, and thus the difference 

must be small in the central region of the disk.  Although the overall differences are not large (i.e. 

only 10% toward disk edge), they are significantly larger than Rickerby's (Rickerby 1977) at the 

high stress central region.  This may be due to the restraining effect of the steel membrane. 

 

The R-O-R specimen has display somewhat less accurate results as compared to the P-O-R 

specimen.  Adler and Mihora (Adler and Mihora 1991), in a detailed study, used a three 

dimensional finite element analysis (FEA) that combined membrane stresses with bending 

stresses and included large shear strains.  “Slide surfaces” were used in the model to eliminate 

the effects of friction between the load ring and plate.  Thin plates (diameter/thickness > 20) were 

found to experience combined membrane and bending stresses.  Thick disks (diameter/thickness 

< 10) underwent bending and shear stresses.  A centerline deflection of 10% of the plate 

thickness introduced substantial membrane stress that increased the tension face stresses.  For 

very thin plates the contact stresses associated with the loading ring were mirrored (i.e. wedging 

stresses occur) such that a tensile face stress almost as large as the compressive contact stress 

occurred.  In the case of a ZnS disk with diameter/thickness ≈ 23, the radial component of stress 

under the steel loading-ring of 3 mm cross sectional radius, as measured with strain gages, 

increased by 55% as compared to the expected value.  Note that uniaxial strain gages were used 

and transverse (up to ~5%) errors may not have been taken into account.  

 

Adler also suggested and analyzed the use of an acrylic (Delrin) ring with a square cross section.  

The square cross section ring resulted in substantially lower compressive contact stresses than 
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even steel rings with a ratio of cross-section radius to plate thickness of 4:1.  Because the 

analysis was done at a maximum stress of 69 MPa, which is substantially less than the stress 

required to fracture most intermetallic or ceramic materials, the Delrin ring may not be applicable.  

Note also that all of the analyses assumed no friction.  Friction can create substantial errors (5 to 

15%) in four-point flexure tests (Hoagland et al. 1976, Baratta et. al. 1987, Quinn 1990) and 

theoretical calculations indicated that errors as large as 50% can occur in R-O-R testing (Fessler 

and Fricker 1984).  To minimize its effect, a support ring consisting of roller bearings that are 

allowed to roll could be used (Godfrey and St. John 1986).  Use of a similar loading ring made of 

balls would probably generate excessive contact stresses, and thus a soft (e.g. annealed copper) 

continuous ring with a large cross-sectional radius, Rc, relative to the plate thickness, t, might be 

used (e.g. Rc /t ratio > 4).  In order to minimize the friction and stress concentration from the upper 

ring, a thin Teflon or rubber shim could be placed between the plate and ring.  Verification of such 

a configuration would require empirical analysis (e.g. strain gage analysis). 

 

For the specific case of a 76.2 mm diameter disk with a Young’s modulus of 100 GPa that was 

loaded with steel rings of 3 mm cross-section radius, FEA calculations assuming no friction 

resulted in radial stresses in good agreement with the thin plate theory of Vitmar and Pukh (Vitmar 

and Pukh 1963) for diameter to thickness ratios between 20:1 and 6:1. The corresponding ratios 

of ring cross-section radius to plate thickness for the example above are surprisingly small: 0.8:1 

to 0.25:1. Note that the assumptions in most analytic models are that membrane stresses, 

transverse shears and highly concentrated loads do not exist.  So the choice of specimen 

diameter, thickness, load-ring cross-section and elastic modulus are critical for each material 

 

Vitman and Pukh’s solution added a term (ro
2/R2) to the conventional solution (Roark and Young 

1975 or Timoshenko and Woinowsky-Krieger 1959) to account for the extra stiffening effect of 

overhang: 
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where F is the applied force, Ri is the load or inner ring radius, Ro is the support or outer ring 

radius, Rd is the plate radius, t is the plate thickness and ν is Poisson’s ratio.  For a round plate 

with no overhang, the (Ro
2/Rd

2) term goes to unity and the conventional solution is obtained.  The 

solution can be used for a square plate if an effective value of Rd that expresses the characteristic 
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size of the plate is used.  The approximate arithmetic mean of the circles inscribed by and 

inscribing the square plate is suggested (Vitmar and Pukh 1963) 

 

( ) 421+= lRd     (8) 

 

where l is the length of the edge.  The maximum deflection for such a plate can be estimated from 

(Vitmar and Pukh 1963) 
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where E is Young’s modulus.   

 

A closed form solution including friction, shear and overhang has been derived by Fessler and 

Fricker (Fessler and Fricker 1984).  The solution indicates that friction increases the stress in a 

region ~0.25t outside of the loading ring by 50 percent for thick disks with a coefficient of friction of 

0.4.  Friction lowers the maximum stress within the loading ring.  The result of friction is to bias the 

failure toward the loading ring and lower the effective area as shown in Table 2.4.3.1.  The 

reduction in effective area is most significant for thick disks and large Weibull moduli, and results 

in increased observed strength.  Note that Equation (15) of Fessler and Fricker’s stress solution 

(Fessler and Fricker 1984) is missing the term (1-υ )(Rs
2-Rl

2)/2Ro
2. 

 

Of particular importance to our material is the requirement that deflection be less than 10% of the 

thickness, as the strong, <001> orientation has the lowest stiffness (E<100> = 96 GPa).  Based on 

the analysis of Adler and Mihora, it may be difficult to design a ring-loaded NiAl specimen that can 

be accurately described by Equation (7).  Although strain gages and FEA could be used to 

estimate the actual stresses and design an accurate R-O-R test specimen, it is probably simpler 

to avoid the complications associated with the R-O-R specimen and to use the P-O-R specimen 

instead.  A further complication with the R-O-R specimen is the lack of a closed form stress 

solution for single crystal materials.  An even more compelling reason to use the P-O-R method is 

that a closed from displacement solution exists for an anisotropic material subjected to uniform 

pressure (Okubu 1949). 
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Table 2.4.3.1: Effect of friction on the effective area, Ae, of a 25 mm diameter disk loaded between 

10 and 20 mm diameter concentric rings.  Poisson’s ratio = 0.23.  Values were calculated by 

numerical integration of the PIA model (Barnett et al. 1967) model, see section 3.4.1, using the 

stress functions of Fessler and Fricker (Fessler and Fricker 1984).  

 

Effective Area, mm2 

Thickness, mm 

 

Coefficient of Friction 

µ 

 

Weibull Modulus 

m 1 2 

0 5 235 235 

0.05 “ 230 226 

0.1 “ 226 218 

0.2 “ 218 202 

0.4 “ 202 172 

0 10 197 197 

0.05 “ 189 182 

0.1 “ 182 167 

0.2 “ 167 142 

0.4 “ 142 102 

0 15 184 184 

0.05 “ 173 162 

0.1 “ 162 142 

0.2 “ 142 110 

0.4 “ 110 70 
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2.4.4 Uniaxial Tensile Testing 

A variety of uniaxial, tensile test configurations for brittle, anisotropic materials have been 

standardized (e.g., ASTM C 1273-95a 1999).  Figure 2.4.4.1 shows tensile specimens that have 

been used to test brittle materials.  Unfortunately, most of these specimens are too large to cut 

from the billets available in this work.  Thus, design of a smaller test specimen that can be gripped 

with a fixed collet system needs to be considered.  The use of a fixed collet presents advantages 

and disadvantages: precise alignment can be made if the proper fixtures are employed, and only 

a short shank length is required.  However, the fixed end-grip condition can result in shear 

stresses for anisotropic materials tested off axis.   

 

An analysis of the effects of fixed end-grips on displacements, strains and stresses for an 

orthotropic material rotated about the z axis was done by Pagano and Halpin (Pagano and Halpin 

1968).  If the analysis is repeated for a cubic system the same equations result: 
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where D is the specimen half-width and the Ci’s are combinations of the elastic constants and the 

applied axial load.  If the analysis is applied to the typical cleavage orientations in Section 2.3, no 

shear stresses result in the xy (cross section) plane.  However, for orientations such as the <511>, 

etc., shear stresses on the order of 20 percent of the normal stress result.   

 

Thus a small cylindrical test specimen as shown in Figure 2.4.4.2 could be used.  The stress 

concentration factor at the gage to shank region is estimated to produce a 2 to 3% increase the 

25
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tensile stress (Peterson 1974).  The concentricity tolerance requirements between the shank and 

the gage section can be calculated from basic stress equations for a rod 
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πσ
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=
    (11) 

 

resulting in a percent bending of 

d

e

t

b 8=
σ
σ

     (12) 

where d is the gage section diameter, e the eccentricity.  For two percent bending a concentricity 

of 0.007 mm or less is required for the proposed specimen.  Centerless grinding can attain such 

tolerances.  

 

Another issue associated with tensile testing is that both the center and surface of the test section 

are subjected to the same stress, and the specimen fails from both surface and volume flaws.  As 

the flexure specimens are biased toward surface failure, predictions of tensile behavior from 

flexure data is more complicated. 

 

2.4.5 Torsion Testing 

The advantage of torsion testing is that it produces a maximum shear stress equal to that of the 

maximum normal stress instead of the 1:2 ratio generated in tension testing.  Thus the opportunity 

for ductile behavior is greater in the case of low ductility, and the sensitivity of the fracture strength 

to combined stresses or shear, can be determined.  This is particularly important for determining 

the failure mechanisms of a material that exhibits yield under certain conditions and brittle fracture 

under others, as the design might be geared toward yield.   

 

No full consensus standards exist for torsion testing of brittle materials.  In addition, torsion testing 

of ceramics and NiAl has been performed infrequently (Blankenship et al. 1995, Petrovic and 

Stout 1981, Oda et al. 1988).  Torsion testing of <100> and <110> binary, NiAl single crystal rods 

was performed by Blankenship et al.  Specimens of <001> orientation exhibited ao<100> 

dislocations and shear strain to failure of 0.11 ± 0.03 whereas <110> orientations exhibited both 

ao<100> and some ao<110> dislocations with a torsional strain to failure of 0.02 ± 0.008.  The 

dislocation density was greater at the specimen surface than the center as would be expected for 
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Figure 2.4.4.1: Tensile specimens used to test brittle materials (ASTM C 1273-

95a 1999).  All dimensions in mm. 
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Figure 2.4.4.2: Miniature tensile test specimen.  All dimensions in mm. 
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torsional loading.  The shear modulus calculated from the tests were very different than reported 

by Wasilewski (Wasilewski 1966) (G<100>=153 ± 7 vs. 112.1 GPa and G<110>=160 ± 27 vs. 52.5 

GPa).  

 

In contrast to the results of Chang et al. (Chang et al. 1992) which found near {110} and {511} 

cleavage planes, Blankenship et al. found fracture facets oriented about 10o from the <001> or 

near <112> fracture surfaces, in agreement with tensile results of Schneibel (Schneibel 1993).  

For the <100> test specimens, their stress analysis indicated that the (112) and (110) were 

subjected to a large normal stress yet the actual failure planes were within 180 of the (100), which 

was subjected to large shear stresses.  For the <110> test specimens the (100) and (112) were 

subjected to large normal stresses, however, the (001) and (112), which are oriented at 900 to 

the (110), were also subjected to large shears.  Failure was observed on {001} and {112} type 

planes.  Although no strong conclusions were put forth by Blankenship et al., it seems that local, 

shear induced failure occurs initially on the {100} planes and is linked together by local cleavage 

near the {112}.  Although the {110} is thought to be the natural cleavage plane, the large 

orientation difference between the {110} and the shearing {100}, which is either 45 or 900, may not 

have allowed failure to link onto the {110} but on a more favorably oriented {112}.   

 

Blankenship et al. calculated stresses in NiAl with solutions for elastically isotropic materials with 

out specific justification.   This can be examined via the solution for an orthotropic rod in torsion 

(Hearmon 1961).  The stresses and angle of twist per unit length, ξ, are given by 

 

x)C(C 15523 +=φσ       

 

     y)C(C 14413 −=φσ     (13) 

 

( ) 4
554416 dSST πξ +=      

 

with                                                 ( ) ( )44554455 CCCCC +−=  

 

where T is the torque, d is the diameter of the cylinder, and the xi’s are the distances along the 

coordinate axes.  The solution was generated such that the crystal axes, coordinate axes and 

geometric axes of the rod were aligned. The solution applies to orthotropic materials in standard 

position or materials of higher symmetry transformed such that the tensor is of an orthotropic 
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form.  For the (100)<001> and (110)<110> tensors shown in section 2.3, the surface shear 

stresses reduce to 

3
1323 dT16 πσσ =−=      (14) 

 

which is the solution for an isotropic medium. 

 

Considering the size of the billets available for this study, the complexities of test specimen 

design, specimen alignment and the machining costs associated with torsion testing, the use of 

simple beam and plate specimens to generate both uniaxial design data and multiaxial model 

verification data seems appropriate for brittle, anisotropic materials such as single crystal NiAl. 

2.5 DETERMINISTIC DESIGN CRITERIA FOR BRITTLE MATERIALS 

2.5.1 Stress-Based Criteria 

2.5.1.1 Maximum Principal Stress 

 

For materials that show little deformation or shear sensitivity upon fracture, the normal stresses 

should control failure.  As the maximum principal stress is the largest normal stress, this theory 

proposes that a predefined form of failure ensues when the maximum principal stress exceeds 

the strength.  No specific flaw is assumed.  Typically, the material’s tensile strength is assumed 

constant in all directions and a safety factor is applied to ensure survival and to account for load, 

geometry and material property variations (Shigley and Mischke 1989).  Compressive stresses 

are treated in a fashion similar to tensile stresses.  The criterion is formulated as  

 

cUCS2

tUTS1

N/S

N/S

≤
≥

σ
σ

     (15) 

where the three principal stresses have the algebraic order σ1 > σ2 > σ3, and SUTS and SUCS are the 

tensile and compressive strengths, respectively, and Nt and Nc  are appropriate safety factors for 

the conditions considered.  The theory does not account for interactions between various principal 

stresses and, as mentioned above, and ignores effects of shears.  A final limitation is that the 

theory does not account for the effects of scale (i.e. component size) exhibited by brittle materials 

such as ceramics and glasses. 
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2.5.1.2 The Modified Mohr Theory and the Tsai-Wu Theory 

 

These theories, though more advanced than the Maximum Principal Stress Theory, have the 

same limitation - they do not account for the effects of scale.  The Mohr theory allows for different 

strengths in tension and compression, and torsional failure is dominated by the tensile stress 

component.  However, it applies only to materials with isotropic tensile and compressive 

strengths.   

 

The Tsai-Wu (Tsai and Wu 1971) formulation mathematically represents the most general case of 

an ellipse (i.e. translated and rotated off the origin): 

 

F Fi i ij i jσ σ σ+ = 1    (16) 

or with expansion 

121212112
2
222

2
1112211 =+++++ σσσσσσσσ FFFFFF   (17) 

 

which is equivalent to an ellipse translated off the origin and rotated, i.e. 

 

Ax Bxy Cy Dx Ey F2 2 0+ + + + + =  .   (18) 

 

It is thus symmetric and convex for a discriminant less than zero (Ellis and Gulick 1978). Thus the 

theory cannot describe materials with equibiaxial weakening.  The theory might be adapted to 

weakest-link materials by incorporating it into a scaling function, but the symmetry of the function 

makes it unlikely that it would work for brittle anisotropic materials exhibiting cleavage planes. 

 

2.5.1.3 Principle of Independent Action 

 

Another stress-based criterion is the principle of independent action or PIA (Barnett et al. 1967).  

Although this criterion was formulated for use with statistical functions, the stresses are treated as 

deterministic and the equivalent stress inducing failure is given as 

 

( ) m1m
3

m
2

m
1eq

/σσσσ ++=     (19) 

for 

0321 >>> σσσ  



 

NASA/TM—2002-210519 32

 

where the σi’s are the principal stresses, m is the Weibull modulus (see section 2.6.1), and σeq is 

the equivalent stress that induces failure 100% of the time when it exceeds a specified value.   

Principal stresses less than zero are generally ignored.  

2.5.2 Fracture Mechanics Criteria 

A variety of deterministic fracture mechanics failure criteria exist.  These can be reformulated in 

terms of an equivalent stress for failure by assuming an embedded or surface connected crack 

and corresponding stress intensity factor coefficient.  Thus, the strength exhibited by a brittle 

component subjected to multiaxial stresses can be related to the fracture mechanics criterion. In 

general the stress intensity factors for the loading modes shown in Figure 2.5.2.1 can be 

formulated as 

K Y a

K Y a

K

I I n

II II

III

=

=
=

σ

τ
0

    (20) 

 

where σn and τ are the normal and shear stresses on the crack plane, YI and YII are the mode I 

and mode II stress intensity factor coefficients (SIFCs), and a is the crack dimension.  For a 

through-wall surface crack of length 2a in an infinite plate, the stress intensity factors are 

 

K a

K a

K

I n

II

III

=

=
=

π σ

π τ
0

.    (21) 

 

For a semicircular crack Smith determined the mode I solution for an infinite plate (Smith et al. 

1967).  For mode II Smith and Sorensen gave a value for an aspect ratio of a/c= of 0.4 with a 

crack depth to section thickness ratio of a/t = 0.2 (Smith and Sorensen 1974). Note that for an a/t 

ratio < 0.5, the YII value increases only slightly, and the value for a/t = 0.2 should approximate that 

for a thick plate, so    

K a

K a

K

I n

II

III

=

=
=

1366

1241

0

.

.

σ

τ .    (22) 
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Figure 2.5.2.1: Basic modes of loading and displacing a crack surface. 

 

 



 

NASA/TM—2002-210519 34 

SIFC’s for surface cracks were also approximated from those of embedded cracks by Theimeier 

et al. (Theimeier et al. 1991): 

0
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=

≈
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=

≈=

III

II

nnI
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aaK
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.   (23) 

 

The normal and shear stresses in terms of the principal stresses and polar and azimuthal angles 

are 

( ) ( )

σ σ θ σ θ

τ σ σ θ

n = +

= −

1
2

2
2

1 2

1

2
2

cos sin

sin
    (24) 

 

for a surface connected crack as shown in Figure 2.5.2.2, and by 

 

( )
( )( ) ( )( )[ ]

σ σ θ σ θ φ σ φ

τ σ σ φ θ θ σ θ σ θ σ φ φ

n = + +

= − + + −
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2
2 2

3
2

1 2

2

1
2

2
2

3

2 1 2

cos sin cos sin

cos sin cos cos sin cos sin
/    (25) 

 

for an embedded (volume) crack.   

 

In general, a failure criterion can be written in terms of the applied stress intensity factors as 

cIIIIII FCKKKFC ≥),,(     (26) 

 

where Fc is the critical value of the materials resistance to unstable crack propagation.  No stability 

requirements are imposed.  The equivalent mode I criterion is defined as 

 

( )IIIIIIIeq KKKFC00KFC ,,),,( =    (27) 

 

where the equivalent stress and stress intensity factor are related by 

 

K Y aIeq I Ieq= σ .    (28) 
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Figure 2.5.2.2: Normal and shear stresses resolved on a crack plane rotated at 

an angle to the principal stresses: (a) surface crack and (b) embedded 

crack. 
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Some of the existing criterion and equivalent stresses are 

 

2.5.2.1 Mode I Failure (MP): 

 

nIeq

Icc
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=

=),,(

.   (29) 

This is equivalent to the maximum principal stress formulation (Equation 15). 

 

2.5.2.2 The Maximum Hoop Stress Factor (MHSF) (Erdogan and Sih 1963): 
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2.5.2.3 The Coplanar Energy Release Rate (CERR) (Paris and Sih 1965): 
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2.5.2.4 The Maximum Noncoplanar Energy Release Rate (NERR) (Hellen and Blackburn 

1975): 
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Other, empirical, fracture mechanics criterion exist (Richard 1985; Shetty 1987) but these contain 

factors that allow variation of the solution to account for microstructural (i.e. coarse grains) effects 

prevent crack sliding and are thus less fundamental.   

 

2.5.2.5 Criteria for Porous Media 

 

The formulations of Eqs. 20 to 32 treat flaws as planar cracks.  In actual materials the critical 

flaws are often pores, agglomerates or inclusions instead of idealized cracks.  In the case of 

inclusions, tractions could be transmitted across the interface and in the case of pores and 

agglomerates, the flaw has a complex three-dimensional shape.  For porous medium, Babel and 

Sines (Babel and Sines 1968) proposed the following biaxial fracture criterion  
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where h is the ratio of the major to minor axes of the elliptical cavity and σ* is a critical tensile 

stress at the surface of a flaw.  The value of σ* is considered a characteristic of the material.  

Good agreement occurred between the model and data generated with hydrostone plaster, high-

silicon cast iron and a porous zirconia.  The effect of test volume was not specifically addressed, 

however, zirconia, like most ceramics, should exhibit a scale effect.  If σ* is equated to an 

equivalent stress, the criteria becomes 
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2.6 PROBABILISTIC DESIGN CRITERIA FOR BRITTLE MATERIALS 

Although reliability theories that account for the variation of a variety of parameters (e.g. 

dimension, properties, applied loads, etc.) on the system or component reliability exist (Haugen 

1980), we are predominantly concerned with a materials strength variation and any effect of scale 

on the measured strength.  The most commonly used reliability theories that account for a brittle 

materials strength variation and an effect of scale are based on that of Weibull (Weibull 1939).  

Ideally, a useful reliability theory should require only simple laboratory data (e.g. flexural strength) 

to infer the reliability of components subjected to nonuniform, multiaxial stresses. 

 

2.6.1 The Weibull Model 

The most basic reliability theory applied to design brittle components is the direct application of 

the Weibull statistical distribution (Weibull 1939).  The cumulative probability of failure or risk of 

rupture, PFx of a brittle component subjected to applied stresses, σ, is  

 

m

m

x o

m
Fx fordxexpP σσ

σ
σσ

>
















 −−−= ∫1  

(35) 

mFx forP σσ ≤= 0  

where m is the Weibull modulus, σο is the scale parameter, and σm is the minimum strength.  The 

scale parameter is the strength corresponding to a unit volume or area stressed in tension.  The 

minimum strength can be determined via data analysis if justification exists, or set to zero 

otherwise.  The integration is carried out over the components surface area and/or volume, 

depending on the location of the flaws resulting in failure, and the independent variable x is 

replaced with area A or volume V.  Flaw types include both intrinsic (i.e. those inherent in the 

material) and extrinsic (those generated on the surface of the material by external events such as 

machining).  Examples of intrinsic flaws are pores, inclusions, course grains, agglomerates, etc. 

which are generated during processing and distributed throughout the volume and exposed at the 

surfaces.  Extrinsic flaws are machining damage, handling scratches, nicks, etc. which are 

located on the surface only.  

 

The shortcomings of the use of the Weibull distribution as a reliability theory have been discussed 

at length (Batdorf and Crose 1974, Batdorf 1978, Evans 1978, Lamon 1988).  The Weibull model 
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is purely statistical and thus does not recognize the existence of flaws with specific characteristics 

(e.g. sharp or dull), thereby requiring empirical measure of the distribution of each flaw population.  

Further, it does not specifically address the effects of multiaxial stress, but implies the principal 

tensile stresses to act independently, thereby ignoring shear and compressive effects, which may 

be of importance. 

 

The assumption of independence of the principal stresses leads to a probability of failure 

formulation known as the principal of independent action (PIA) (Barnett, et al. 1967, Freudenthal 

1968).  For surface and volume analysis, respectively, the functions are 
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where σ1 , σ2, and σ3 are the principal stresses.  If, instead, the normal stresses in all directions are 

assumed to reduce reliability and averaged, the normal tensile stress averaging model proposed 

by Weibull (Weibull 1939) for multiaxial stresses is attained: 

( ) dxkexpP
m

x

nwpsFx 





−−= ∫ σ1     (38) 

 

where kwps is a polyaxial crack density coefficient.  The averaged normal stress is 

 

( )
∫
∫=

x

x

m
nm

n

dx

dxσ
σ       (39) 

where the variable x is replaced with the contour C for surface analysis and surface S for volume 

analysis, and the integration is performed about a unit circle or a unit sphere, respectively.  The 

model is capable of predicting volume effects for a uniaxial stress state (Lamon 1988). 
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2.6.2 The Batdorf Model 

Batdorf and Crose (Batdorf and Crose 1974) proposed a model that combined the probability of a 

crack existing in a volume with the probability that the crack will cause fracture.  The probability of 

a crack existing for a material with a crack density N is, for a volume element,  

 

P N Ve = ∆       (40) 

 

Because real materials have a distribution of cracks sizes and shapes, the number of cracks in a 

volume ∆V that have critical stresses between σcr and σcr + dσcr is needed.  Defining a distribution 

function N(σcr) which gives the density of cracks having a critical stress less than or equal to σcr , 

the number of cracks is  

( )
dN V

dN

d
d

cr

cr
cr= ∆

σ
σ

σ     (41) 

The probability that the crack is critical is given by the ratio of the solid angle, Ω, containing the 

normals to all the orientations for which the normal stress component is greater than the cracks 

critical stress to the solid angle of a unit half-sphere: 

 

( ) πσΣΩ 4/,P crc =      (42) 

where Σ represents the applied stress state.  Though the initial theory (Batdorf and Crose 1974) 

was formulated for the normal stress component only, general stress states were later considered 

(Batdorf and Heinisch 1978).  The probability of failure of a component becomes 
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where σemax is the maximum effective stress that a randomly oriented flaw could experience from a 

general stress state.   

 

Batdorf and Heinisch (Batdorf and Heinisch 1977, Batdorf and Heinisch 1978) also introduced 

effective stress criterion for the model based on the work of Oh (Oh 1970, Oh 1973) and Paul 

(Paul and Mirandy 1976) for the stress distribution around Griffith cracks and flat, ellipsoidal 

cavities.  For A Griffith crack, the effective stress is 
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( )22 τσσσ ++= nne h     (44) 

 

where h is the ratio of the major to minor axis of the ellipse.  For a Griffith notch the effective 

stress is 

  

( ) ( ) ( )( )12111121 22 ./h. nne τνσνσσ +−++=   (45) 

 

The model shown in Eq. (43) reduced the gap between physically based fracture mechanics 

models and statistically based weakest link theories such as Weibull’s, and avoided the 

assumption of independence of stress which “ignores the fact that, for some crack orientations, 

two principal stresses can combine to fracture a crack that would not fracture by either stress 

acting alone” (Batdorf and Crose 1974).  The flaws were assumed to be noninteracting, randomly 

oriented, uniformly distributed, closed, planar entities in an isotropic medium that was subjected to 

macroscopic tensile stresses only.  No stable or subcritical crack growth was assumed to occur 

prior to failure.  Crack size was not explicitly treated.   

 

Predictions of the probability of failure of graphite (Poco AFX-5Q) tubes subjected to hoop and 

axial stresses were made from tensile dog-bone data using volume integration only.  The ratio of 

effective volumes was 3:1 and the prediction was within 1% when the tubes were subjected to 

axial loading and within 8% for hoop loading.  The larger error for hoop loading was attributed to 

the possibility of anisotropy 

 

Giovan and Sines (Giovan and Sines 1979) tested alumina (WESGO AL-995) in uniaxial and 

biaxial flexure with longitudinally ground and lapped surface conditions.  Uniaxial strength data 

were attained by placing wide beams (i.e. plates) in four-point flexure (Ae ≅ 315 mm2).  The biaxial 

data was attained by R-O-R loading of circular plates (Ae ≅ 641 mm2).  The specimens were 

designed to have the same surface area subjected to the maximum principal stress.  The 

machining was relatively aggressive (0.05 mm removal rate) as compared to what is now typically 

specified (0.002 mm per pass for the final 0.06 mm, ASTM C 1161 1990), and probably resulted 

in machining damage and the relatively large Weibull moduli (19 and 21 for the as-ground plates 

and disks, respectively, and 17 and 18 for the lapped plates and disks respectively, as estimated 

from data given in the paper).  Also, the supports were not allowed to roll in either specimen 

configuration, and thus errors due to friction probably existed.  Their results indicate that the 

Weibull and PIA models over and underestimate, respectively, the probability of failure of the 
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concentric ring specimens with approximately twice the effective area as the four-point flexure 

specimens from which the predictions (both lapped and as-ground) were made.  However, the 

Batdorf model with the following shear-sensitive effective-stress for a penny shaped crack was 

satisfactory for both the lapped and as-ground conditions: 

 

( )222 5.01 ντσσ −+= ne     (46) 

 

where τ is the shear stress acting on the crack plane.  Eq. (46) is based on the coplanar energy 

release rate (Batdorf 1977).  Note that the small effective area differences results in small 

differences in the measured strengths of the beams and disks.  Thus, the ability of the model to 

scale over large areas was not rigorously tested.  Surprisingly, the as-ground disks were not 

reported to fail parallel to the grinding direction as would be expected considering the aggressive 

grinding and the fact that the transversely ground plates exhibited lower strength than the 

longitudinally ground plates (235 ± 18 vs. 202 ± 20 MPa) as would be expected.  Unfortunately, 

the specific failure origins were not identified.  Both the uniaxial and biaxial specimens had the 

same surface area, and the disks were about eight percent weaker than the uniaxial plates for 

both finishes, implying a closed flaw population (i.e. equibiaxial weakening occurred). 

 

Thiemeier and Bruckner-Foit (Thiemeier and Bruckner-Foit 1991) analyzed aluminum nitride (AlN) 

four-point flexure (Ae ≅ 99 mm2) and R-O-R (Ae ≅ 453 mm2) data using an equivalent stress 

approach based on the work of Batdorf et al. (Batdorf and Crose 1974, Batdorf and Heinisch 

1978).  Six different failure criterion were considered for through-wall and semicircular crack 

types: The maximum principal stress, the coplanar energy release rate (Paris and Sih 1965), the 

maximum hoop stress factor (Erdogan and Sih 1963), the minimum strain energy density (Sih 

1974), the maximum noncoplanar energy release rate (Hellen and Blackburn 1975), and the 

empirical criterion of Richard (Richard 1985).  The maximum noncoplanar energy release rate 

and the empirical criterion of Richard produced predictions within the confidence interval of the 

disk data for both crack types.  The maximum hoop stress criterion agreed only for the through-

wall crack configuration. The results illustrate well the importance of fracture criterion and 

confidence bands in making predictions. 

2.6.3 Criteria for Anisotropic Materials 

Many brittle materials are anisotropic in some sense.  A material can be anisotropic in three 

aspects particularly relevant to the design of structures: elastic behavior, strength (by way of 
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fracture toughness), and flaw distribution.  Single crystals, textured polycrystalline materials and 

composites are anisotropic in terms of elasticity and strength.  The flaw populations may or may 

not vary with orientation.   

 

Of such anisotropic materials, graphite has been used frequently in studies of weakest-link 

reliability models (Batdorf and Crose 1974, Buch 1976, Margetson 1976).  Batdorf and Crose 

(Batdorf and Crose 1974) treated graphite as isotropic (Poco AFX-5Q) although they concluded 

that it might have been anisotropic.  

 

Margetson (Margetson 1976) accounted for the anisotropic strength distribution of graphite by 

modifying the PIA formulation of the Weibull model (Barnett 1967, Freudenthal 1968).  The 

principal stresses were normalized with the strength in the principal directions instead of with a 

single characteristic strength as done for the isotropic case.  Also, to account for compressive 

strength being different from tensile strength, a step function was added which multiplied the 

direction dependent tensile strength by the ratio of compressive strength to tensile strength.  The 

probability of failure for volume analysis was given as  

 

( ) ( ) ( ) 






















+












+























−−= ∫

V

m

)(
fv

m

)(
fv

m

)(
fv

m

FV dV
HHHm

expP
3

3
3

2

2
2

1

1
11

1
σσ

σ

σσ
σ

σσ
σΓ         (47) 

 

where Γ(1/m) is the gamma function of 1/m, and   
)1(

fvσ , 
)2(

fvσ , and 
)3(

fvσ  are the respective 

average unit volume strengths in the direction of the principal stresses, σ1 , σ2, and σ3.  The gamma 

function allows the average unit volume strengths to be used instead of the characteristic values.  

The step function to account for compressive stresses is  

 

( )H σ  = 1   ,   σ ≥ 0 

(48) 

( )H σ  = -η  ,  σ < 0 

   

where η is the ratio of the compressive and tensile strengths of the material.  In terms of the scale 

parameter, which is typically used in Weibull type functions, the probability of failure is  
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Although volume integration was specified in the model and used in the data analysis, an area 

integral was probably more appropriate as all the testing was done in flexure.  In order to 

determine the materials strength envelope, three-point flexure tests were conducted on test 

specimens cut from graphite blocks.  The strength data was fit with an ellipsoidal function that had 

a circular cross section in one plane (i.e. the strength was isotropic in that plane).  To verify the 

model, circular disks were cut parallel to the isotropic plane and tested in R-O-R biaxial flexure.  A 

ratio of compressive to tensile strength of η = 8 was assumed.  The large η implies that the 

compressive stresses do not greatly effect the reliability.  The model was slightly conservative 

(approximately 3%) in predicting the biaxial strength from the three-point flexure data.  The slight 

conservatism could have resulted from friction between the loading rings and specimen or contact 

stresses, as no mention of lubrication is made.  Note, however, that for a plate cut from the 

isotropic plane and tested in flexure, the material and model simplify to the isotropic case and the 

model was not verified for the anisotropic case.  

 

One minor shortcoming of the model is that it assumes that the compressive strength distribution 

differs from the tensile distribution by only a single multiplying factor.  This is probably not the case 

(Adams and Sines 1976) and the inclusion of compressive effects requires characterization of the 

compressive strength distribution as a function of orientation.  If the Weibull moduli are different, 

the Weibull modulus could also be multiplied by a step function as follows   
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where the step function to account for compressive stresses on Weibull modulus is  

 

( )σ2H  = 1   ,   σ ≥ 0 

(51) 

( )σ2H  = χ  ,  σ < 0 
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where χ is the ratio of the Weibull moduli in compressive and tensile loading of the material.  

Another problem with the model is that it only considers the principal planes, which may not be the 

weakest planes.  Stress states might arise in which large normal stresses are resolved on the 

cleavage planes while the reliability is only a function of the stresses and strengths in the principal 

directions.  Thus, the ratio of normal stress to strength may be a more relevant parameter in 

calculation of reliability.  A better modification of the PIA model might include both the principal 

stresses and the stresses on the cleavage planes, both normalized to the appropriate strength 

parameters.  Note that both the {100}, {110} and {111} families of cleavage planes are not typically 

orthogonal to each other.  Generally, the occurrence of the maximum principal stresses on one 

planar set precludes its occurrence on another.  However, the {100} and {110} and the {110} and 

{111} sets contain members that are orthogonal to each other and the existence of the maximum 

principal stress on a given cleavage plane does not preclude the resolution of the second principal 

on another set.  Further, when the principal stresses are equal, they will be resolved onto all 

crystal planes a point in the body.  

 

Duffy and Arnold (Duffy and Arnold 1990) followed the approach of Weibull (Weibull 1939) and 

Barnett and Freudenthal (Barnett, et al. 1967, Freudenthal 1968) to develop a reliability model for 

transversely isotropic whisker reinforced ceramic components. As with most weakest link type 

models, no interaction is assumed, and the material is a continuum that is sufficiently discretized 

to make stress, strain and temperature constant while still having sufficient volume to be a 

statistically homogenous medium.  Unlike the previous models, however, they took advantage of 

the scalar nature of reliability functions and the contaminant tensor invariance under orthogonal 

transformations.  The materials symmetry was accounted for via unit vectors incorporated into the 

reliability function.  Thus, invarients related to the stress components causing fracture were 

developed and incorporated into a PIA like model, resulting in  
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for a unit volume where the I*
i ‘s are the invarients, the mi‘s are the Weibull moduli and the σoi‘s 

are the scale parameters.  The component reliability would be given by integration of the function 

over the total area or volume, as for all Weibull type formulations.  No verification of the model 

was performed. 
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Based on the literature reviewed, no fracture mechanics based reliability model exists for 

application to brittle materials exhibiting strength and elastic anisotropy.  The isotropic reliability 

models based on the Weibull distribution offer a good starting point for the development and 

verification of a more general reliability model that is applicable to brittle materials exhibiting 

elastic and strength anisotropy. 
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CHAPTER 3:  THEORY: ANISOTROPIC RELIABILITY MODEL    

 

In this chapter, a reliability model for anisotropic materials will be derived from two approaches: 

the first from an intuitive analysis of how the strength distribution in an anisotropic body effects the 

reliability of the body, and the second from a probabilistic analysis of the effects of a crack 

distribution of random orientation and size on the reliability of an anisotropic body. 

3.1 MODELS BASED ON THE PRINCIPLE OF INDEPENDENT ACTION   

Per the discussion in Chapter 2, the PIA model as modified for anisotropy (Margetson 1976) does 

not consider that the principal stresses may not align with the cleavage planes. Thus the PIA 

model needs to be modified to consider the effects of normal tensile stresses on a multiplicity of 

planes, or at least the most significant planes, leading to 
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where σn<hkl> is the normal stress in the <hkl> direction, σo<hkl> is the scale parameter or unit 

strength in the <hkl> crystal direction.  The summation is taken over the most significant planes 

(i.e. the weak cleavage planes and those subjected to all the principals).  Two extreme cases of 

Equation (53) can be considered: that in which a single term in the summation dominates 

reliability and that in which all normal tensile stresses reduce reliability.  The first case occurs if the 

stress distribution consists of a large tensile stress oriented on or near a weak cleavage plane; the 

term in the summation is the maximum ratio of normal stress to scale parameter.  The second 

case is the limit in which the summation term becomes an integral over all crystal directions.  This 

would appear conservative (i.e. over estimate the probability of failure) based on isotropic data, 

even though the normal stress component in any direction should reduce the reliability associated 

with three-dimensional flaws.  Such an effect was proposed by Weibull for isotropic materials 

(Weibull 1939) via the normal stress averaging technique which was given previously in Equations 

(38) and (39). 
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Use of Equations (38) and (39) requires the crack density coefficient for a multiaxial stress state, 

kwps, on the stressed, free surfaces of the crystal.  For two dimensional isotropic cases, the 

approach of Gross and Gyekenyesi  (Gross and Gyekenyesi 1989) might be used to estimate a 

kwps value for an anisotropic material by averaging the uniaxial crack density coefficient, kws, over 

the <hkl> directions of a contour in the (mno) plane of interest 

k

k dC

dC
ws

ws
C mno

C mno

=
∫

∫
( )

( )

.     (54) 

The limits of integration depend on the symmetry of the (mno) plane.  For multiple planes (i.e., a 

three dimensional body), a series of terms is required in Equation (53), or it can be solved on an 

element-by-element basis.  This leads to a solution of the form  
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π Γ
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    (55) 

where kwps is an effective crack density coefficient for anisotropic surface subjected to multiaxial 

stresses.  The obvious problem with this solution is that stresses and crack density coefficients 

are averaged instead of being matched on a plane-to-plane basis. Further, a function describing 

strength in all directions in the plane is required. 

For a plate in biaxial flexure, a single free (mno) surface is stressed in tension and the contour 

integral is taken over the <hkl> directions.  If the (100) plane is considered, the strength repeats 

every quadrant and the strength in a <hkl> direction might be described by 

( ) ( ) 




 ++= ><><>< 2
22 2

110
2

100100

πΘσΘσΘσ coscos oohkl)(o    (56) 

where Θ is the angle from the <100>, σo<100> and σn<110> are the unit strengths, respectively in the 

<100> and <110> directions.  In order to determine if the effects of multiaxial stresses on the 
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reliability can be predicted, more complex testing such as torsion or biaxial flexure is required.  For a 

three-dimensional surface, a more general equation is required. 

A more general approach for anisotropy might be to integrate the ratio of strength to stress about the 

unit circle 

[ ]
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where Nn
m  would represent an average ratio of normal stress to strength for a surface, which must 

be calculated element by element, and is less than unity (Batdorf 1978).  Although this approach 

only considers effects of normal stresses, an effective stress could replace the specified normal 

stress.  Replacing the normal stress with a mode I equivalent stress derived from any appropriate 

fracture mechanics failure criterion leads to 
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where and σIeq<hkl> is the mode I equivalent stress parallel to the <hkl> direction and normal to the 

(hkl) plane at a location.  The same function is derived in a more rigorous fashion in the next 

section. 
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3.2 A GENERALIZED WEIBULL RELIABILITY MODEL FOR BRITTLE 

MATERIALS WITH STRENGTH AND ELASTIC ANISOTROPY   

A general reliability model for homogenous brittle materials with strength anisotropy can be 

derived by modifying the approach of Thiemeier et al. (Thiemeier 1991) to consider fracture 

toughness, and thus strength, as a variable of orientation in the probability density function.  The 

probability of failure of a brittle material containing randomly distributed surface flaws is related to 

the probability that a crack of a given orientation exists at a given location and the probability that 

the flaw exceeds the critical dimension for failure.  If the cracks are assumed to be randomly 

distributed in orientation and location via a uniform distribution, the probability of a crack existing 

at a location with a particular orientation is 

θ
πθ ddA

A
p

T
,A

11=     (59) 

where AT is the total surface area of the body and π is the total range of possible crack angles.  

The probability that a given flaw causes failure is the probability that the randomly distributed 

crack size (i.e. no variation in the crack size distribution and Weibull modulus with orientation) is 

greater than the critical crack length ac on that plane: 

( ) daafaapp
c

c

a

aca )(∫
∞

=>=     (60) 

where fa is the probability density function describing the crack size distribution and a is the 

randomly distributed crack size.  The critical crack size on any plane of an anisotropic material is 

related to the fracture toughness by 

a
K

Y xc
Ic

I Ieq

=
2

2 2

( )

( , )

θ
σ θ

     (61) 

where KIc (θ) is the fracture toughness of the plane at angle θ, YI is the crack geometry factor, and 

σIeq (θ,x) is a mode I equivalent stress at orientation θ and location x as defined by any of 

applicable failure criterion for elastically anisotropic materials.  Note that some of the failure 
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criteria in section 2.5.2 are applicable to anisotropic materials as they are independent of the 

elastic constants.  Only the stresses and the stress intensity factor coefficients are necessary.   

For a material with fracture toughness anisotropy, both the fracture toughness and equivalent 

stress are functions of the crack plane orientation.  Thus ac depends on the location of the crack 

by way of the equivalent stress and on the orientation of the crack by way of the fracture 

toughness and equivalent stress.  The probability of a single crack causing failure in a component 

is thus 

( )
Addda)a(f

A
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A T
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1

11
   (62) 

To solve Equation (62), a functional form for the crack size distribution needs to be assumed.  If a 

power function of the form 

( ) gCaaf −=      (63) 

is used, Equation (62) becomes 
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    (64) 

for g > 1.  The reliability of a component containing the above flaw is R1 = (1-P1), and the reliability 

of the component for n flaws is  

( )R Pn

n
= −1 1      (65) 

The probability of n cracks actually occurring in a components area for an average crack 

occurrence is given by the binomial distribution if the sampled areas are independent and have 

equal probability of a crack existing.  The binomial distribution can be approximated by the 

Poisson distribution (Miller and Freund 1977) for a large sample area and a small probability of 

crack occurrence in a unit area, which should be the case for dense, well made components with 

small flaws.  The probability of n cracks becomes: 
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( )
!n

exp
p

n

n

λλ −=      (66) 

where λ is the product of the number of sampled areas and the probability of a crack existing in a 

sampled area, or the expected (i.e. average) number of cracks.  The probability of the component 

surviving is the sum of the product of the reliability at any crack frequency and the probability of 

that frequency occurring: 

P p Rs n n
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∞
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     (67) 

Substituting Equations (64), (65) and (66) into (67) and using the equality  
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leads to  

( )1PexpPs λ−=     (69) 

and  
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The expected number of cracks and the area are not known initially.  However, the total number 

of crack in the total area is equivalent to the average number of cracks per unit area:  

To

o

AA

λλ
=  .     (71) 

Also, because crack length is inconvenient to measure and strength “captures” the combination of 

fracture toughness and crack length, Equation (60) can be substituted into (59).  If the fracture 
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toughness is written in terms of a reference strength and crack length (i.e. KIc (θ)=σo (θ)YI√π ao), 

then by substitution of (70) and (60) into Equation (69)  
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where m=2g-2.  Further reduction is attained by redefining the initial crack density as 
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yielding the reliability function for anisotropic materials 
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This has the basic form of the Weibull function and is similar to the isotropic model given by 

Thiemeier and those frequently use for polycrystalline ceramics, except that the reference 

strength is a function of planar angle and any failure criterion defining coplanar crack extension 

can be used.  A function describing the strength as a function of angle on the surface(s) 

considered is needed along with the stress state in the anisotropic body. Because of the symmetry 

of a cubic material, the fracture toughness, strength and elastic properties repeat every quadrant 

and the second integral can be multiplied by a factor of two, and the integration taken from 0 to π 

/2.  For a three-dimensional component, the finite element method (FEM) can be applied to 

determine the stress state and perform the integrations.  The element size must be sufficiently 

small so that the stress state is nominally constant, and any curved surfaces can be descritized to 

planes effectively.  The model assumes coplanar extension can effectively occur on any plane. 

The above analysis can be extended to volume flaws by modifying Equation (58) to 
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where VT is the component volume and the other variable are as defined previously.   

The reliability formulation in Eq. (74) is very convenient as it allows the use of any fracture 

mechanics failure criterion that is applicable to elastic isotropy or anisotropy as necessary, a 

variety of crack shapes and a scale parameter defining the strength as a function of orientation.  

In order to apply the reliability function, a mode I equivalent stress failure criterion applicable to 

elastic anisotropy is required.  

3.3 A FAILURE CRITERION FOR ELASTICALLY ANISOTROPIC MATERIALS 

All of the mode I equivalent stress formulations given in section 2.5.2 are applicable to isotropic 

and anisotropic materials except that for the coplanar energy release rate.  A mode I equivalent 

stress failure criterion for the coplanar energy release rate can be derive for an elastically 

anisotropic material by accounting for elastic anisotropy.  The mode I equivalent energy release 

rate can be defined as (Paris and Sih 1965)  
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where the Sij’s are the single crystal elastic constants (compliances), KI  and KII are the mode I 

and II stress intensity factors defined as KI = σn√πa and KII = τ√πa where a is the crack size, σn is 

the normal stress and τ is the shear stress on the specified plane.  The quantities µ1 and µ2 are 

the roots of the complex equation (Lekhnitskii 1963) 

( ) 0222 2226
2

6612
3

16
4

11 =+−++− SSSSSS µµµµ  .   (79) 

The equivalent stress can be derived by defining the mode I equivalent stress intensity as 

KIeq = σIeq√πa .     (80) 

Substituting Eqs. (78) and (80) into (77) leads to  
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Eqs. (56), (74) and (81) define energy based, probabilistic fracture mechanics functions for the 

reliability analysis of an elastically anisotropic, brittle surface such as a plate.  For a volume 

analysis, more general equations are required.  In order to conveniently make strength predictions 

with Eq. (74), it is necessary to reformulate it in terms of strength instead of probability.  

3.4 RELIABILITY PREDICTION FORMULATIONS                                             

3.4.1 Isotropic Materials  

For the case of strength isotropic, Equation (74) reduces to  
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For the specific case of measured test specimen or component data, the probability formulation is 
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where σMAX is the maximum stress sustained by the specimen or the strength.  The scale 

parameter, σo, in Equation (35) and (82) can be determined by equating the general form of the 

Weibull equation (i.e. Equation (82)) to that for the specific case of test specimen data (i.e. 83) 

and solving for the scale parameter: 

( )
























−−=


















−− ∫∫ dAd

x,1
A
1

exp1exp1
0

m

o

Ieq

Ao

m

MAX θ
σ

θσ
πσ

σ π

θ

  (84) 

or, as the scale parameter is a constant 

m/m

A MAX

Ieq

o
o Add

A

1

0

11


















= ∫ ∫ θ

σ
σ

π
σσ

π

θ                           (85) 

or 

m/
eo A1

θσσ =      (86) 

where Ae is the “effective area” of the specimen and σθ is the characteristic strength of the test 

specimen, or the stress for which for 62% of the specimen would fail.  Generally the PIA model is 

employed and σIeq in Equation (85) replaced with the principal stress or stresses as appropriate. 

Although Equation (82) can be used to predict the failure distribution of a biaxial test specimen or 

a component from uniaxial test data, for verification purposes it is more convenient to use 

characteristic strength values associated with the biaxial flexure test specimen, because the 

strength was experimentally measured.  Rearrangement of Equation (85) provides the function   
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If Equation (87) is equated to itself for two different failure strengths and effective areas, a 

convenient scaling equation for a given probability of failure can be derived: 

( ) m/
ee AA 1
1221 =θθ σσ     (88) 

where σθi is the characteristic strength corresponding to effective area Aei.  The effective area for all 

the surfaces subjected to tension in three- or four-point flexure specimens is (Nemeth et al. 1990) 
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where m is the Weibull modulus for the surface flaw population, So and Si are the outer (support) 

and inner (loading) spans respectively, and B and W are the depth and height of the beam 

respectively. 

Equations (88) and (89) are generally considered capable of predicting four-point strengths from 

three-point strength data for brittle, isotropic materials such as polycrystalline ceramics and glasses.  

They are noted here because they constitute a convenient approach for verification exercises. 

Note that the use of the maximum stress in Eqs. (83) and (84) is an arbitrary, but convenient and 

common choice as most engineering comparisons consider the maximum stress to represent 

strength, etc.  However, Fessler and Fricker (Fessler and Fricker 1984) use a nominal stress to 

compare plate specimens with and without friction and generated a nondimensional value of 

effective area by normalizing to the total specimen surface area or volume. 

For the POR biaxial flexure test configuration and the PIA failure criterion, the effective area of the 

disk test specimen can be calculated from 
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within 1.5% for m > 5, ν  >  0.17 and within 1% if Rs /Rd < 0.9 also.  For the disks tested herein, Ae = 

227 mm2.  For the three-point flexure specimens tested herein, Ae = 2.06 mm2, implying an 

effective area change of ~110:1.  The nominal tensile surface areas of the WC POR test 

specimens and the size “A” 3-point flexure specimens were 40 mm2 and 2027 mm2, respectively. 

3.4.2 Anisotropic Materials 

For the anisotropic case, equating Equation (82) and (83) leads to 
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with the scale parameter unfactorable from the integrand because of its functionality.  However, if the 

PIA approach is applied, the equivalent stress and scale parameter are nonzero in the principal 

direction only, and   
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where θ1 is the orientation of the principal stress and the measured characteristic strength.  The 

corresponding scale parameter is independent of the scale parameter in other directions.  This is 

analogous to the isotropic case and scaling of uniaxial data for a specific orientation can be done as 

usual 

( ) ( ) m/

hkleehkl AA 1
1221 ><>< =θθ σσ     (95) 

where σθi is the characteristic strength corresponding to effective area Aei in the <hkl> direction of 

interest.  For more general failure criterion, the scale parameter can be estimated from uniaxial 

characteristic strength data by noting that the equivalent stress is a function of the first principal 

stress and trigonometric functions.  Thus, the area and unit circle integrations can be separated by 

grouping the terms as functions of angle or the Cartesian area coordinates 

( )
( )

( )
( )

m/
m

oA

m

MAXo

d
f

dA
x,

A

1

01

11 11
−



















×





= ∫∫ θ

θσ
θ

πθσ
θσσ

π

θ    (96) 

or 

( )
( )

m/m

o

e d
fA

1−



















= ∫ θ

θσ
θ

π
σ

θ
θ     (97) 

where f(θ) is the failure criterion written in terms of unit, uniaxial principal stress.  Note that for the 

uniaxial case, the integrand in (97) is identical for any specimen size and once again equation (89) is 

applicable.  Further, as Equation (97) can be divided by itself for two different uniaxial volumes and 

simplified to yield Equation (88), implying that characteristic strength is independent of failure 

criterion for uniaxial cases and computation of the scale parameter unnecessary.  However, the 

scale parameter is still required for prediction of multiaxial stress cases and Equation (95) needs to 

be solved for σo for the desired failure criterion.   

The functional form of the scale parameter is unknown in Eq. (96).  However, because it nominally 

represents a scaled value of the characteristic strengths, it can be assumed to take the same form.  

For the (100) plane the scale parameter in any <hkl> direction can be represented as 
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( ) ( ) ( )ΘσΘσΘσ 2sin2cos 2
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where Θ is the angle from the <100>.  Note that the effective stress functions in Equations (29) – 

(32) are integrated about the unit circle from the first principal stress whereas the strength function 

has an absolute reference to the crystal orientation.  Thus, a phase angle accounting for the 

difference between the starting angle for the scale parameter function and the orientation of the 

principal stress is needed.  The general function in terms of the angle θ from the principal stress 

becomes 

( ) ( )ΦθσΦθσσ 2222 2
110

2
100100 +++= ><><>< sincos oohkl)(o   (99) 

where the angle Φ is 0 and Θ = θ  for a principal stress oriented in the <100> direction. For a 

principal stress orientated in the <110> direction Φ = π/4 and Θ = θ.  For experimentally measured 

characteristic strength data, Equation (97) can be written as 
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and  
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and the two equations used to solve for the unknown values σo<100> and σo<110> based on any failure 

criterion.  For the normal stress criterion with a unit stress, 

( ) θθ 2cosf = .     (102) 

For the maximum coplanar energy release rate with a unit stress 
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For maximum noncoplanar energy release rate with a unit stress 
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In Eqs. (102) – (104) θ is the angle from the first principal stress and YI and YII are the mode I and 

Mode II SCIFs as defined in section 2.5.2. 

Eq. (91) defines a function for the prediction of the characteristic strength of a component exhibiting 

strength and elastic anisotropy.  The required inputs are the scale parameter constant in Eq. (99) as 

determined by simultaneous solution of Eqs. (100) and (101), and an equivalent stress as defined in 

section 2.5.2 or 3.3. 
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CHAPTER 4:  EXPERIMENTAL PROCEDURES: MATERIAL PROPERTIES 

AND VERIFICATION TESTING 

In order to assess the ability of Equation (74) to predict the strength of isotropic or anisotropic 

materials subjected to multiaxial stresses, the uniaxial and biaxial strengths of an isotropic and an 

anisotropic material were measured.   

4.1 TEST SPECIMEN PREPARATION 

4.1.1 Isotropic Material 

 

The isotropic material used was a commercial grade WC with a 6% nickel binder (KZ801, 

Kennametal Corp., Latrobe, PA).  Billets measuring 25 mm in thickness were ground and lapped 

on one face in order to provide a surface with minimal machining damage and isotropic strength 

behavior.  Lapping was used because test specimens that are manufactured with typical uniaxial 

grinding procedures (e.g. ASTM C 1161 1990) and subsequently subjected to multiaxial stresses 

tend to fail from grinding damage rather than from inherent processing flaws. 

 

4.1.2 Anisotropic Material 

 

Single crystal billets of a NiAl alloy manufactured commercially2 were mounted on goiniometers 

and oriented by X-ray diffraction.  Flexural specimens (ASTM C 1161), measuring 3 by 4 by 45 

mm in height, depth and length, respectively, were then cut from the billets along the <100> or 

<110> axes by electro-discharge machining (EDM).  The secondary orientation was not controlled 

relative to the beam surfaces.  The resulting surfaces were sanded with 400 grit silicon carbide 

paper and chemically milled in a solution of phosphoric and nitric acid to remove the remaining 

EDM damage.  The chemical milling procedure follows (Walston 1995): 

 

1. Mix a solution of 85% phosphoric acid and 15% nitric acid. 

2. Heat to 125oF while stirring constantly. 

                                                           

2 AFN 12 - General Electric Aircraft Engines, Evendale, Ohio. 
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3. Submerse the specimens in the solution, making sure that the surfaces of interest are exposed 

to the stirred solution.  Leave the specimens in the solution for 15 minutes. 

4. Rinse the specimens in water. 

 

The specimen were then inspected at ~30x magnification with an optical microscope, and if 

necessary the sanding and etching processes were repeated until no EDM damage was visible on 

the tensile or side surfaces of the specimen.  An example of EDM damage on the surface of a 

specimen is shown in Figure 4.1.2.1. 

 

Disk specimens for biaxial flexure were cut from a billet and prepared in a similar manner  

4.2 MEASUREMENT OF ELASTIC PROPERTIES 

The elastic modulus and Poisson’s ratio of the WC was measured by applying the impulse 

excitation technique (ASTM C 1259 1994) to the ten 50.8 mm diameter, 2.2 mm thick disk test 

specimens.   

 

In order to determine if the elastic properties reported by Wasilewski or Rusovic′ and Warlimont 

(Wasilewski 1966, Rusovic′ and Warlimont 1977) for binary NiAl were sufficient for calculations on 

this alloy, the elastic modulus was determined along the <100> and <110> crystal directions.  The 

impulse excitation technique (ASTM 1259 1994) was used on 46 <100> and 65 <110> flexural 

beam specimens.  

4.3 UNIAXIAL STRENGTH TESTING  

The uniaxial strength of the WC was measured in three-point flexure by using twenty-nine size “A” 

test specimens measuring 1.5 by 2 by 25 mm in height, depth and length (ASTM C1161 1990).  

Flexure testing was used because it is relatively simple, requires little test material and has been 

standardized for brittle materials (i.e. ceramics) (ASTM C 1161 1990).  The tensile surface of the 

test specimens corresponded to the lapped surface of the billet.   
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Figure 4.1.2.1: EDM damage along the surface of a flexural test specimen: (a) 

overall view and (b) detail.  EDM damage was not removed prior to chemical 

milling. 

(b) Detail 10 µm 

(a) Overall view  
100 µm 
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point flexure. Measurement were made in both three and four-point loading because the different 

volumes subjected to stress provide a means to verify the model for the simple case of uniaxial 

stresses.  Size “B” specimens (3 by 4 by 40 mm in height, depth and support span for three-point 

loading; a 20 mm loading span was used for four-point loading) were used.  The strength was 

calculated from  

( )
2

ioFlex
UTS BW

SSF

2

3
S

−=     (105) 

where F is the failure force, So and Si are the outer (support) and inner (loading) spans 

respectively, and B and W are the depth and height of the beam respectively. 

4.4 BIAXIAL TEST RIG DESIGN AND ANALYSIS 

A biaxial test rig employing the P-O-R configuration was designed based on descriptions given in 

the literature (Rickerby 1977, Shetty 1983).  Based on the discussion in Section 2.4.3, it was 

thought that a neoprene membrane or no membrane would provide the best results, particularly 

for NiAl because it is relatively strong, has a relatively low elastic modulus as compared to 

ceramics or steel, and will exhibit larger deflection at failure for a given test specimen 

configuration.  

 

The membranes used previously to contain the pressurization medium on face of the test 

specimen were replaced by a nitrile O-ring retained in a groove.  A cross section of the test rig, 

which accommodates 25.4 mm diameter disks is shown in Figure 4.4.1.  The rig consists of a test 

chamber, support ring and cap, extensometer and oil inlet and drain ports.  The desired 

pressurization cycle is supplied to the test chamber and specimen via a servo-hydraulic actuator 

connected to a closed loop controller.  The feedback to the controller is supplied by a commercial 

pressure transducer connected to the oil inlet line.   

 

The test chamber and cap are 304 stainless steel, and the support ring is cold rolled, half-

hard copper or steel depending on the pressure required.  Copper, being somewhat ductile, 

accommodated any minor misalignments or specimen curvatures.  Detailed drawings of the 

rig are given in Appendix A. 

 

Ideally, the test rig applies a uniform pressure on the supported surface of the disk test 

specimen, and allows it to deflect without rotational or sliding restraint at the support ring.  The 

resulting biaxial stress state provides a means to estimate the biaxial strength of a material, 

provided that the stress state generate within the specimen can be calculated.  

 

The flexural strengths of the NiAl <100> and <110> beams were measured in both three and four- 
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Figure 4.4.1: Schematic of the biaxial test fixture. 
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4.4.1 Stress State in a Pressurized Plate: Okubu’s Approximate Solution 

The displacement solution for a simply supported, circular, special orthotropic plate of unit radius 

and thickness subjected to uniform pressure was solved by Okubu (Okubu 1949) in the form of a 

series.  An empirical solution for a plate of unit radius, similar in form to the isotropic solution 

(Szilard 1974), was also proposed: 

 

( )( )221
64

rkr
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q
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where q is the applied pressure, t is plate thickness, r is the position of interest and the Sij’s are 

the material compliances.  The plate rigidities, Dij’s, and associated functions are written in the 

more standard notation used by Hearmon (Hearmon 1961) instead of that used by Okubu (Okubu 

1949).  Note that Equation (106) was published by Hearmon (Hearmon 1961) for the general case 

of a non-unit radius: 

( )( )222

64
rkrr

D

q
w p −−≅ ∗

∗ .    (110) 

where rp is the radius of an anisotropic plate.  However, an rp
2 term is missing.  For the general 

case of a plate of variable support radius the displacement should be 

( )( )2222
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D

q
w pp
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For the simpler case of cubic symmetry, the constants reduce to 
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Note that the effect of overhang is ignored in the displacement solution and the specimen radius 

is set equal to the support radius.  Because the symmetry of an orthotropic or cubic crystal is 

orthogonal, the elastic constants are in Cartesian form and the stresses and strain need to be 

determined in Cartesian coordinates.  The strains and stresses are determined from the curvature 

equation in Cartesian form and the usual strain-displacement relations for pure bending: 
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where z is the distance from the mid-surface of the plate.  The stresses are determined from the 

strains by (Hearmon 1961): 
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where 666612221111221222112211 S1b,SSS/Sb,SSS/Sb =−=−= and 1222111212 SSS/Sb −−= .  As the 

plate is cylindrical, a description of the stresses in polar coordinates is more intuitive.  The 

Cartesian values at any point in the plate can be converted as follows: 
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where ϕ is the counter clockwise angle from the x axis. The resultant stresses as a function of 

angular orientation in a (001) NiAl plate are shown in Figure 4.4.1.1.  The stresses are a function 

of both radial position and orientation, with the tangential stresses being greater than the radial 

stresses at all locations except the plate center where they are equal.  For any radius, the peak 

tangential stress in the plane of the plate occurs at the <110> directions, whereas the peak radial 

stress occurs along <100> directions. 

4.4.2. Okubu’s Exact Solution 

Because Eq. (110) is approximate, its accuracy is an issue for reliability calculations.  The 

deflection at any point in an anisotropic plate is defined as (Hearmon 1961,Timoshenko 1959) 
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Okubu defined the exact displacement solution for a plate with unit radius as 
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Figure 4.4.1.1: Stresses in a {100} plate of unit radius and thickness subjected to 

a unit uniform pressure as calculated with Okubu's (Okubu 1949) approximate 

solution. 
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on the boundaries of a plate with a unit radius.  The An’s, Bn’s and Ci’s can be determined by 

applying the boundary conditions that the displacement and moments disappear at the edge of 

the on the boundaries of a plate.  The necessary functions are given by Okubu (Okubu 1949).  

The terms c’ and a’ are dependent on the elastic constants only and can be derived from the 

Cartesian to curvilinear transformation equations provided by Okubu: 
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with                             21 kasinhc,1acoshc,kasinhc,1acoshc =′′=′′′′=′′=′′                 (124) 
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for a plate of unit radius. The resultant stresses as a function of angular orientation in a (001) NiAl 

plate are shown in Figure 4.4.2.1.  The stresses are a function of both the radial position and the 

orientation, with the tangential stresses being greater than the radial stresses at all locations 

except the plate center where they are equal.  For any radial position, the peak tangential stress in 

the plane of the plate occur at the <110> directions, whereas the peak radial stress occurs along 

<100> directions. 

 

The stress resulting in a NiAl plate as calculated from the series and approximate solutions are 

compared to the isotropic solution in Figure 4.4.2.2 for a (001) plate of unit radius and thickness 

subjected to a unit pressure.  The approximate and isotropic solutions predict higher stresses 

(~10%) near the plate center, with the isotropic solution decaying more rapidly than either of the 

anisotropic solutions. Thus, for an anisotropic plate, greater care in preparation of the test 

specimen edges is needed.  

 

As Okubu’s solutions were derived for a plate of unit radius, thickness and applied pressure, 

generalization for application to real specimens is needed. 

4.4.3 Generalization of Okubu’s Solution to Variable Radius 

For a disk of any radius, the equations defining the boundaries and displacement are function of 

the radius.  The terms relating c’ and a’ in Eq. (124) become 

 

21 sinh,cosh,sinh,cosh kracrackracrac pppp =′′′′=′′′′=′′=′′ .  (125) 

 

This leads to 

 

( )
( )( ) ( ) ( ) ( )

( )
( )( ) ( )

∑
∞





















′−
−−

′−+

′′







−

+
+

−′+
++

′+
′

=
2

n

2n2cos
2n21n2

2n2cosh

n2cosn2cosh
1n2n2

1

n21n2

1
2n2cos

1n22n2

2n2cosh

A
4

c
w

βα

βαβα

     + 

 

 

 

 

 



 

NASA/TM—2002-210519 73 

 

 

 

 

 

 

 

Stress/Pressure
0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

<010>

<
00

1>

<01
1>

Tangential Stress, r/rp = 0.2
Radial Stress, r/rp = 0.2
Tangential Stress, r/rp = 0.8
Radial Stress, r/rp = 0.8

 

 

 

 

 

Figure 4.4.2.1: Stresses in a {100} plate of unit radius and thickness 

subjected to a unit uniform pressure as calculated with Okubu's 

(Okubu 1949) series solution. 
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Figure 4.4.2.2: Comparison of the stresses in a {100} plate of unit radius and 

thickness subjected to a unit uniform pressure as calculated with 

isotropic and anisotropic solutions: <100> direction and (b) <110> 

direction. 
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as in the original solution.  The condition that w vanishes at the plate boundary rp gives 
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and the general curvatures for any radial position become 
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or in curvilinear coordinates 
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The constants An’s, Bn’s, and Ci’s are noted to be functions of q/t3 and various powers of rp. Thus 

the q, t and rp terms can be factored from the curvature equations and the curvatures written in a 

form more typically used to describe plates.  This also allows the constants for a given crystal 

system to be determined only once by setting the terms to unity in Equations (109), (118), (125), 

(127) and (128) (i.e. solving Okubu’s boundary equations).  The curvatures in a general format 

with q, r and t factored become 
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and the displacement function becomes 

 



 

NASA/TM—2002-210519 78 

( )
( )( ) ( ) ( ) ( )

( )
( )( ) ( )

( )
( )( ) ( ) ( ) ( )

( )
( )( ) ( )

( )















































++++++





















′′−
−−

′′−+

′′′′







−

+
+

−′′+
++

′′+
′′

+





















′−
−−

′−+

′′







−

+
+

−′+
++

′+
′

= ∑

∑

∞

=

∞

=

2
6

22
5

2
4

4
3

22
2

4
1

2

2

2

2

3

22
2212

22

22
122

1
212

1
22

1222
22

4

22
2212

22

22
122

1
212

1
22

1222
22

4

pp

n
n

n
n

rCryCxCyCyxCxC

n
nn

n

nn
nnnn

n
nn

n

B
c

n
nn

n

nn
nnnn

n
nn

n

A
c

t

q
w

βα

βαβα

βα

βαβα

cos
cosh

coscoshcos
cosh

cos
cosh

coscoshcos
cosh

    (132) 

 

in Okubu’s format or 
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in curvilinear coordinates only and a form more similar to that used to express the displacements 

of circular plates.   

 

The constants for both NiAl and an orthotropic graphite epoxy composite are given in Table 

4.4.3.1.  As can be seen from Table 4.4.3.1, the solution converges rapidly, especially for {100} 

plates of NiAl.  The computer code used  to calculation the constants in given in Appendix B. 

 

Note that Okubu’s model is capable of analyzing only {100} or {110} plates and cannot be used for 

generally anisotropic plates (e.g. {111} or {511} plates) because they have fully populated stiffness 
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matrices and exhibit bend/twist coupling which complicates the elastic solution due to ill-defined 

boundary conditions.  However, fully anisotropic plates are of interest because they are more 

representative of a complex component.  Thus, the finite element analysis method with gap 

elements at the supports might be used for analysis of such general cases.  The gap elements 

should account for “lift off” from the supports as necessary.  Another minor complication with 

Okubu’s solution is that it does not consider the stiffening effect of overhang, which occurs when 

the plate is larger than the support.  Practically, overhang is necessary to prevent the test 

specimen from falling off the support and to minimize the tangential stresses at the test specimen 

edge and thereby avoid edge failures.  Based on the isotropic solution, if the support diameter is 

within 95% of the specimen diameter the error in the maximum stress is less than 2% and if the 

support diameter is within 90% of the test specimen diameter the error is less than 4%. 

 

 

Table 4.4.3.1: Displacement solution constants (x10-6) for NiAl and graphite/epoxy plates of unit 

thickness and radius subjected to a unit lateral pressure. 

 

NiAl: 

S22 = S11 = 1.0428, S12= -0.421, S66= 0.892  (x 10-5 m2/MN) (Wasilewski 1966) 

C1 C2 C3 C4 C5 C6 A2 B2 A3 B3 

1.392 2.009 1.392 -7.253 -7.253 5.958 0.474 -0.105 10-15 10-16 

Graphite Epoxy: 

S11 = 0.6667, S22= 11.11, S12 = - 0.2000, S66= 14.08  (x 10-5 m2/MN) (Lee and Saravanos 1995) 

C1 C2 C3 C4 C5 C6 A2 B2 A3 B3 

2.741 9.046 4.080 -15.52 -16.34 12.24 0.385 0.385 0.079 0.079 

 

 

4.5 BIAXIAL RIG VERIFICATION 

4.5.1 The Isotropic Case 

Ideally, the test rig will generate stresses described by simple plate theory.  A comparison was 

made between isotropic plate theory (Szilard 1974) and the stresses measured with stacked, 
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rectangular strain gage rosettes3 placed at eight radial positions on the tensile surfaces of two 

4340 steel disk test specimens as shown in Figure 4.5.1.1.  The strain-gaged biaxial flexure test 

specimens were inserted in the test fixture, pressurized and removed repeatedly while the strain 

was recorded as a function of pressure.  The average of at least three slopes, as determined by 

linear regression of strain as function of pressure, were used to calculate the mean strains and 

stresses (Measurements Group Tech Note TN 509 and TN 15).  A maximum pressure level of 

6.90 MPa (1000 psig) was deemed adequate because the strains developed approached the 

strain limit of the gages and the errors were noted to decrease as the pressure increased.  

 

Because the calculation of stress from strain via constitutive equations requires the elastic 

modulus and Poisson’s ratio, measurements were made by the flexural resonance of the disk test 

specimens (ASTM C 1259 1995).  The estimated elastic moduli and Poisson’s ratio were 204.0 ± 

0.4 GPa and 0.29, in good agreement with handbook values (CINDAS/USAF 1997).   

 

During pressurization cycles, the rig was noted to exhibit a significant hysteresis when the support 

ring was not lubricated.  The loading slope was very linear and the unloading cycle very nonlinear, 

particularly near the load reversal.  However, if the specimen - support ring interface was 

lubricated with an anti-seizing compound4, the hysteresis was substantially reduced and the 

strains increased.  This behavior can be explained by the specimen slipping across the support 

ring during loading but sticking briefly upon load reversal.  Because strength measurement only 

involves the loading slope only, loading data was regressed for comparison to plate theory.  The 

slopes of the loading curves typically exhibited correlation coefficients greater than R2 = 0.999.  

The application of hydraulic oil to the specimen - support ring interface had little effect on the 

measured stresses, as shown in Table 4.5.1.1.  

 

For the lubricated condition and a pressure of 6.90 MPa agreement between plate theory and the 

measurements was within `~1% at the disk center, within ~2% at 55% of the support radius and 

within 9% at 75% of the support radius.  In general, the errors increase with increasing radial 

position, particularly for the tangential component.  The results are summarized in Table 4.5.1.1 

and shown in Figure 4.5.1.2 along with 95% confidence intervals.  

 

 

                                                           

3 Gage designation WA-06-030WR-120, Measurement Group, Raleigh, NC. 

4 Never-Seez, Never-Seez Compound Corp., Broadview, IL. 
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Figure 4.5.1.1: 4340 steel plate with strain gage rosettes attached. 
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The significance of the differences between the plate theory and the measured stresses can be 

assessed by estimating the standard deviations and confidence intervals of the measurements.  

The standard deviations of the strains and stresses were calculated from the apparent strain 

variances by applying a truncated Taylor series approximation (Haugen 1980) to the transverse 

sensitivity correction equations, the strain transformation equations and the stress-strain relations.  

For a rectangular strain rosette, the standard deviations of principal stress, principal strain and 

principal strain uncorrected for transverse strain errors are 
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( ) ( )2312
2

21 2 ε−ε−ε+ε−ε=β ˆˆˆˆˆ  

 

where E and ν are the elastic modulus and Poisson’s ratio of the test material, νo is Poisson ratio 

of the strain gage manufacturers calibration material, is the transverse sensitivity of the strain 

gage, � , � , �ε ε ε1 2 3  are the apparent strains and SDxi  is the standard deviation of the xi  variables: 

�ε p and �εq  being the uncorrected principal strains, ε p and εq  being the corrected principal strains, 

and σ p  and σ q  being the corrected principal stresses.  The elastic constants in Equation (134) 

 

 

are assumed to be exact for a single test specimen. 
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Figure 4.5.1.2: Measured and theoretical stresses for a 4340 steel disk as a 

function of normalized radial position.  Error bars indicate the 95% confidence 

intervals. 
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Table 4.5.1.1: Measured stresses, standard deviations and theoretical stresses for a 25 mm 

diameter, 4340 steel disk subjected to 6.90 MPa uniform pressure. 

 

Radial Position Radial Stress, MPa Tangential Stress, MPa 

Percent of 

Support 

 

Theory 
[2] 

 

Measured[3] 

Percent 

Difference 

 

Theory 
[2] 

 

Measured[3] 

Percent 

Difference 

1.7, Unlubricated 465 418±0.6 -10 465 432±0.9 -7.0 

33, Unlubricated 415 393±0.2 -3.3 436 409±0.3 -6.4 

43, Unlubricated 377 348±0.3 -6.1 415 391±0.4 -5.8 

55, Unlubricated 318 278±3.6 -12 382 336±2.3 -12 

69, Unlubricated 237 209±3.6 -9.2 335 311±0.1 -7.1 

75, Unlubricated 194 162±1.3 -16 311 265±1.3 -15 

1.7, Oil 465 418±2.9 -10 465 432±1.6 -7.2 

33, Oil 415 398±2.7 -3.9 436 311±2.9 -5.0 

43, Oil 377 351±3.2 -6.9 415 396±1.3 -5.2 

56, Oil 318 277±1.5 -13 383 336±1.8 -11.2 

69, Oil 237 211±0.9 -11 335 310±1.5 -7.4 

75, Oil 194 161±0.6 -17 311 266±0.6 -15 

1.7, Anti-Seize[1] 465 459±2.2 -1.3 465 470±3.0 1.1 

33, Anti-Seize  415 414±3.2 -0.2 436 432±5.1 -1.0 

43, Anti-Seize 377 365±2.9 -3.1 415 410±4.8 -1.1 

55, Anti-Seize 318 318±1.5 0 383 374±1.0 -2.0 

69, Anti-Seize 237 231±5.5 -2.2 335 330±8.2 -1.5 

75, Anti-Seize 194 205±2.5 5.6 311 305±2.7 -1.9 

1.7, Clamping ---- -4.9±1.0 ---- ---- 0.9±1.0 ---- 

33, Clamping ---- 0.5±0.1 ---- ---- 2.3±0.3 ---- 

43, Clamping  ---- 0.2±0.2 ---- ---- 2.8±0.4 ---- 

69, Clamping ---- 0.5±0.4 ---- ---- 3.6±0.5 ---- 

[1] Never-Seez, Never-Seez Compound Corp., Broadview, IL.   

[2] See (Szilard 1974).  

[3] Mean ± one standard deviation. 
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The clamping forces exerted by the O-ring and cap on the specimen resulted in stresses on the 

specimen surface.  The level and consistency of these stresses were measured by repeatedly 

inserting and removing a strain-gaged specimen from the fixture.  The stresses generated by 

clamping varied with orientation and radial position.  During three clampings, the principal 

stresses averaged –4.9 ± 1.0 and 0.9 ± 1.0 MPa, respectively at the disk center, and 2.3 ± 0.3 and 

0.5 ± 0.1 MPa, respectively at 33% of the support radius.  The maximum principal stresses 

observed in the unlubricated condition were 5.5 and 1.3 MPa at the disk center.  As the 

specimens deflect and slide across the support ring during pressurization, these clamping 

stresses may be relieved. 

 

Thus, stresses generated by the test rig in a lubricated, isotropic plate can be described (Szilard 

1974) by 
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were q is the applied pressure, Rs is the support ring radius, t is the disk thickness, Rd is the disk 

radius and r is the radius of interest.  The term σs is a small correction factor to the simple plate 

theory for the effects of the shearing stresses and lateral pressure on the plate deflection 

(Timoshenko and Woinowsky-Krieger 1959). 

 

4.5.2 The Anisotropic Case 

To compare the test rig with the solutions of Okubu, single crystal NiAl disk test specimens were 

machined with the face of the disk corresponding to the {100}.  One specimen was strain gaged at 

four locations and pressurized to 4.8 MPa in the rig with anti-seizing lubricant on the boundary.  

The strain gage positions corresponded to ~50% of the support radius (i.e. r/rp = 0.5) with one 

gage located along the <100> and the others along the stiffer <110> directions.  The resulting 
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stresses are shown in Figure 4.5.2.1 and summarized to Table 4.5.2.1.  The stresses calculated 

with the series solution are within 2% of the measured stresses at the plate center and within 6% 

at approximately 50% of the support radius.   

 

To further verify the test rig, nine disk test specimens were strain gaged and pressurized to 

failure.  The maximum strain at failure is compared to those calculated with Eqs. (114), (115) and 

(131) in Figure 4.5.2.2.  The strains generated in the rig lie between those of the solutions, with 

the approximate solution overestimating the average measured strains by ~5% and the series 

solution underestimating the rig data by approximately 3%.  However, neither the approximate or 

series solutions consider the effect of lateral pressure and shear on the strains and stresses.  If 

the isotropic correction term, σs, in Equation (135) is used with the Poisson’s ratio of 

polycrystalline NiAl (ν ≈ 0.31 (Noebe et al. 1993)) to approximate the error, an addition strain of 

 

 

 

Table 4.5.2.1: Measured stresses, standard deviations and theoretical stresses for a 25 mm 

diameter, {100} NiAl single crystal plate supported on a lubricated[1] steel ring and subjected to a 

4.8 MPa uniform pressure. 

 

Radial Position Radial Stress, MPa Tangential Stress, MPa 

Percent of 

 Support Radius 

and Angular 

Position 

Plate 

Theory[2] 

MPa 

 

Measured[3] 

MPa 

Percent 

Difference 

Plate 

Theory[2] 

MPa 

 

Measured[3] 

MPa 

Percent 

Difference 

2, center 305.7 300.1±1.0 -1.8 305.7 311.2±1.2 +1.8 

44, ><100  259.8 251.3±3.1 -3.3 272.2 264.4±1.7 -2.9 

51, >< 101  234.2 232.9±1.0 -5.6 274.8 262.8±1.0 -4.4 

50, >< 011  215.9 223.7±1.0 +3.6 299.3 288.8±1.0 -3.6 

[1] Never-Seez, Never-Seez Compound Corp., Broadview, IL.  

[2] See (Okubu 1949). 

[3] Mean ± one standard deviation. 
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Figure 4.5.2.1: Measured and theoretical stresses for a {100} NiAl disk test 

specimen as a function of normalized radial position.  The support 

ring was lubricated with anti-seizing compound.  Error bars indicate 

the 95% confidence intervals: (a) <100> direction and (b) <110> 

direction.  

(b) 

(a) 
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approximately 1.7% is expected, implying that the bending stress components generated by the 

test rig closely approximate the series solution.  However, the beneficial effect of the lateral strains 

are mitigated by the effect of overhang. 

 

Thus, considering the complexity of the series solution relative to the approximate solution, the 

use of the approximate solution for practical engineering purposes is reasonable. 

4.6 BIAXIAL STRENGTH TESTING 

4.6.1 Isotropic Material 

The biaxial strengths of ten WC test specimens were measured using the pressure-on-ring (POR) 

test rig as discussed in Section 4.4.  Table 4.6.1.1 summarizes the test specimen dimensions.  The 

strength was calculated from the maximum value of Eq. (135): 
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where the symbols are as defined in Eq. (135). 

 

 

 

Table 4.6.1.1: Test specimen dimensions for the isotropic case. 

 

Specimen Configuration 

(number tested) 

Mean[1] 

Thickness or height 

mm 

Mean Width  

or Radius 

mm 

Support Span or 

Radius 

mm 

Three-point, “A” Beams (29) 1.50 ± 0.002 1.98 ± 0.07 20.02 

Biaxial, POR  (10) 2.22 ± 0.004 25.40 ± 0.005 22.74 

[1] Mean ± one standard deviation. 
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4.6.2 Anisotropic Material 

Thirteen NiAl disk test specimens with {100} orientation were pressurized to failure in the POR 

test apparatus.  Table 4.6.2.1 summarizes the test specimen dimensions.  A nominal pressure rate 

resulting in a strain rate corresponding to that used in the flexure testing was applied (10-4/s).  The 

support ring was lubricated in order to minimize the effects of friction.  For the approximated 

solution, the strength was calculated from the maximum values of Eq. (116): 
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where the symbols are as defined in Eqs. (109) to (113). 

 

 

 

Table 4.6.2.1: Test specimen dimensions for AFN12 single crystal NiAl specimens tested in 

biaxial flexure. 

 

Specimen Configuration 

(number tested) 

Mean[1] 

Height or Thickness 

mm 

Mean 

Depth or Diameter 

mm 

Support  

Span or Diameter 

mm 

Biaxial, POR  (13) 1.49 ± 0.004 25.22 ± 0.15 23.19 

[1] Mean ± one standard deviation 
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          CHAPTER 5:  EXPERIMENTAL RESULTS: MATERIAL PROPERTIES 

AND VERIFICATION TESTING 

5.1 ELASTIC PROPERTIES 

 

The elastic modulus of the WC was 607 ± 3 GPa and Poisson’s ratio was 0.22. 

 

A mean and standard deviation of 96.9 ± 1.0 GPa was measured on the <100> and 187 ±  

2.7 GPa on the <110> orientation of the NiAl.  These results are in good agreement with the 

published values of 95.9 and 187.3 GPa (Wasilewski 1966) and within 10% of the published 

values of 86.0 and 205.0 GPa (Rusovic′ and Warlimont 1977), implying that the small percentage 

of alloying elements has not substantially altered the elastic properties.    

5.2 UNIAXIAL STRENGTH 

5.2.1 Isotropic Material 

Table 5.2.1.1 summarizes the measured uniaxial strength of the WC test specimens.  The 90% 

confidence intervals (Abernathy et al. 1983) are included.  The maximum likelihood method was 

used to calculate the Weibull parameters (Jakus et al. 1981 and Sonderman et al. 1985). 

 

 

 

Table 5.2.1.1: Measured flexural strength statistics and 90% confidence intervals for WC. 

 

Specimen 

Configuration 

(number tested) 

Mean[1] 

Strength 

MPa 

Characteristic 

Strength, σθ 

MPa 

90% 

Confidence 

Bands on σθ 

Weibull  

Modulus 

m 

90% 

Confidence 

Bands on m 

Three-point, “A”  (29) 2910 ± 223 3001 2950, 3053 19.0 14.9, 24.2 

[1] ± one standard deviation. 
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5.2.2 Anisotropic Material 

Tables 5.2.2.1 and 5.2.2.2 summarize the measured uniaxial strength of the NiAl test specimens.  

Detailed test results are given in Appendix C.  The 90% confidence bands (Abernathy et al. 1983) 

are included for the determination of the statistical significance of the observed differences in 

measured strength.  The mean strength and standard deviation of the specimens from each billet is 

shown in Figures 5.2.2.1 and 5.2.2.2.  Note that two of the <100> billets exhibit an average strength 

somewhat significantly greater than the remaining billets.  The resulting probabilities of failure as a 

function of stress are shown in Figure 5.2.3 for <100> and <110> orientations.  Censored Weibull 

statistics were used to rank the data (Jakus et al. 1981) and the maximum likelihood estimator 

(MLE) (Sonderman et al. 1985) was used to calculate the Weibull parameters.  The characteristic 

strength and mean strength as a function of orientation in the {100} plane are shown in Figures 

5.2.2.3 and 5.2.2.4. 

 

5.3 FRACTOGRAPHY OF THE FLEXURE SPECIMENS  

Scanning electron microscopy was performed to determine the source of test specimen fracture.  

The results are summarized in Table 5.2.2.2.  The <100> specimens fractured predominately 

from inclusions protruding from the machined surface, Figure 5.3.1.  However, the <110> 

specimens failed from a mixture of inclusions and electro-discharge machining damage (EDM), 

even though all the flexure specimens were prepared together in a like manner.  Energy and 

wavelength dispersive analyses5 of the inclusions typically indicated large amounts of hafnium 

(Hf) with smaller amounts of titanium (Ti) and carbon (C), implying complex carbides of the form 

(HfTi)C.  Occasionally a significant oxygen peak was obtained, implying the presence of both HfO 

and (HfTi)C.  However, because the dominant signal indicated Hf with the presence of C, the 

inclusions will be referred to as HfC.  Thus, as carbide are the inherent strength limiting 

mechanism, lowering the Carbon content during processing should reduce the frequency and/or 

size of HfC inclusions and thereby increase strength. 

 

Note that the inclusions are three dimensional and bonded to the matrix and therefore probably 

support significant tractions.  Further, the thermal and elastic constants may be substantially 

different from those of the NiAl matrix.  Thus the flaws are not the ideal, classical concept of open 

closed cracks. 

                                                           

5 IMIX-PC Prism Digital Spectrometer, Princeton Gamma Physics, Princeton, NJ. 
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Table 5.2.2.1: Flexural strength of AFN12 single crystal NiAl - normal statistics. 

 

Orientation and 

Flexural 

Configuration 

Failure[1] 

Location 

and Type 

Number 

of Tests 

Mean 

Strength 

MPa 

Standard Deviation 

of Strength  

MPa 

Coefficient 

of Variation 

 

<100> 3-point  S-HfC 15 1261 209 0.17 

<100> 4-Point S-HfC 32 1010 202 0.20 

<110> 3-Point S-HfC 9 767 177 0.23 

<110> 4-Point S-HfC 15 629 130 0.21 

<110> 3-Point S-EDM 3 466 69 0.15 

<110> 4-Point S-EDM 19 340 107 0.31 

          [1]  S = surface; EDM = electro-discharge machining scar. HfC = Hafnium carbide inclusion. 

          

 

 

 

 

Table 5.2.2.2: Flexural strength of AFN12 single crystal NiAl - Weibull statistics. 

 

Orientation and 

Flexural 

Configuration 

Failure[1] 

Location 

and Type 

Characteristic 

Strength 

σθ, MPa 

90% 

Confidence  

Bands for σθ 

Weibull[2] 

Modulus 

m 

90%  

Confidence 

Bands for m 

<100> 3-point  S-HfC 1350 1258 to 1475 6.1 4.4 to 8.5 

<100> 4-Point S-HfC 1094 1032 to 1158 5.4 4.3 to 6.8 

<110> 3-Point S-HfC 843 754 to 933 4.8 2.2 to 9.2 

<110> 4-Point S-HfC 689 642 to 735 5.5 3.5 to 8.2 

<110> 3-Point S-EDM --- --- --- --- 

<110> 4-Point S-EDM 474 --- 4.6 --- 

        [1]  S = surface;  EDM = electro-discharge machining scar.  HfC = Hafnium carbide inclusion.  

        [2]  Weibull modulus and characteristic strength were determined with the maximum likelihood method. 
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Figure 5.2.2.1: Average <100> four-point flexural strengths and 90% confidence 

intervals for AFN12 single crystal NiAl billets. 
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Figure 5.2.2.2: Average <110> four-point flexural strengths and 90% confidence 

intervals for AFN12 single crystal NiAl billets. 
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Figure 5.2.2.3: Weibull distributions for the <100> and <110> orientations of 

AFN12 single crystal NiAl tested in three and four-point flexure. 
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Figure 5.2.2.4: Mean strength as a function of orientation on the {100} for AFN12 

single crystal NiAl tested in four-point flexure. 
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Figure 5.2.2.5: Characteristic strength as a function of orientation on the {100} for 

AFN12 single crystal NiAl tested in four-point flexure. 
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Despite the fact that the principal stress was oriented to induce cleavage along a low index plane, 

the test specimens did not appear to macroscopically cleave on the cleavage plane common to 

cubic crystals (i.e. {100} and {110}), as shown in Figures 5.3.2 and 5.3.3.  However, the fractures 

(due to EDM scars or HfC inclusions) appeared to have occurred on a specific plane, rather than 

conchoidally as facets extending from the HfC inclusion are apparent.  This was in contrast to 

observations on test specimens that failed during machining or handling: theses exhibited 

macroscopic cleavage along the {110}.  For some materials cleavage only occurs in a well-

defined manner when appropriate conditions of stress and or crack velocity exits.  If these 

conditions do not exist, then conchoidal fracture occurs.  In order to determine the orientation of 

the fracture facets, Laue X-ray analysis of selected cleavage facets was performed.  The 

specimens were mounted on a holder with two mutually perpendicular axes of rotation and 

examined with a microscope that had a collimated light aligned with the microscope axis.  The 

light source was used to align the facet normal to the axis of the microscope and holder by 

seeking the fullest reflection.  The holder was then transferred to an X-ray machine.   

 

X-ray analysis did not identify a dominant crystal plane associated with the facets.  Instead the 

fracture facets near the origin of these samples appeared to propagate along various high index 

planes.  Figure 5.3.4 is a summary of the major crystal planes identified in six different <110> 

four-point flexure specimens.  The only similarities associated with these cleavage planes are the 

fact that they are all high index, consist of near center-triangle orientations, and are all far from 

(011).  This is nominal agreement with Blankenship’s results that show facets from several 

families of planes.  

 

The test specimens that were fractured in four-point flexure and those that fractured during the 

machining and handling process were subjected to substantially different stress states, strain 

energies and loading velocities.  Thus the effect of impact and crack velocity were briefly 

investigated to determine if more defined facets could be generated.  Additional flexure tests were 

run at stress rates of 13,270 MPa/s and 27,930 MPa/s.  In addition, several Charpy impact tests 

were run at both room and liquid nitrogen temperatures.  Again, fracture occurred on high index 

planes with similar bifurcation angles as those shown in Figure 5.3.2. 
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Figure 5.3.1: Failure origins in AFN12 NiAl single crystal flexure specimens: (a) 

Hf rich inclusion in a <100> test specimen, and (b) EDM damage in a <110> test 

specimen. 

 

(a) 

(b) 
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Figure 5.3.2: Typical bifurcation pattern observed on the surface of <110> 

flexure test specimens: (a) overall flexure test specimen and (b) detail of a 

fracture location.  
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Figure 5.3.3: Side view of a segment from a fractured AFN12 <110> four-point 

flexure test specimen. 
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Figure 5.3.4: Summary of cleavage planes in <110> four-point flexure test 

specimens.  Numbers are crystal <hkl> directions associated with fracture 

facets. 
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It should be noted that the fracture mirrors about the EDM origins are nominally {110}, and the 

crack bifurcation is symmetric about the {110} in all cases.  Because substantial strain energy is 

stored during flexural testing but typically not during failure due to machining/handling (which 

occur via local contact stresses), the crack may be "over driven" during flexural fracture and thus 

turns off the {110}.  The stored strain energy can be reduced by stiffening the specimen, fixtures 

and load cell.  Limited proof of this concept is shown in Figure 5.3.5, where the bifurcation angle is 

plotted as a function of fracture stress, indicating that the bifurcation angle tends to increase with 

increasing fracture stress and thus stored energy.   

 

An alternative explanation (Darolia et al. 1993) for the lack of {110} cleavage is that under 

conditions where microplasticity occurs, cleavage deviates from {110} to a series of high index 

planes centered around {511} and {711}, which is somewhat consistent with the observed 

cleavage planes summarized in Figure 5.3.4.  In the absence of microplasticity, cleavage will 

occur along {110}.  In some respects, these two explanations are complimentary since greater 

strain energy can be stored in the material as microplasticity occurs.   

 

Another explanation for the variation in cleavage angle observed on the specimen tensile surface 

is the variation in secondary orientation.  Unless the cleavage planes are orthogonal to the test 

specimen orientation (i.e. <110>), variation in the secondary orientation will cause a variation in 

the angle traced on the tensile surface of the specimen.  The correlation of strength with observed 

angle could also imply an effect of secondary orientation on strength. 

 

imparting damage in the grinding direction, allows accurate tolerances while imparting minimal 

damage in the test direction (ASTM C 1161 1990). 

 

5.4 BIAXIAL STRENGTH 

5.4.1 Isotropic Material 

 

Table 5.4.1.1 summarizes the measured uniaxial and biaxial strength of the WC test specimens.  

The 90% confidence intervals (Abernathy et al. 1983) are included for the determination of the 

statistical significance of the observed differences in measured characteristic strength and Weibull 

modulus.  The mean strength of the disk test specimens is 20% less than that of the uniaxial test 
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Figure 5.3.5: Bifurcation angle plotted as a function of fracture stress in <110> 

four-point flexure test specimens. 
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specimens and the difference is statistically significant.  The difference between the Weibull moduli 

for uniaxial and biaxial data is not statistically significant at 90% confidence.  The maximum 

likelihood method was used to calculate the Weibull parameters (Jakus et al. 1981 and 

Sonderman et al. 1985). 

 

5.4.2 Anisotropic Material 

Table 5.4.2.1 summarizes the measured biaxial strength of the NiAl test specimens.  Detailed test 

results are given in Appendix D.  The 90% confidence intervals (Abernathy et al. 1983) are 

included for the determination of the statistical significance of the observed differences in 

measured characteristic strength and Weibull modulus.  

 

 
 

Table 5.4.1.1: Measured strength statistics and 90% confidence intervals for WC. 

Specimen 

Configuration 

(number tested) 

Mean[1] 

Strength 

MPa 

Characteristic 

Strength, σθ 

MPa 

90% 

Confidence 

Bands on σθ 

Weibull  

Modulus 

m 

90% 

Confidence 

Bands on m 

Three-point, “A”  (29) 2910 ± 223 3001 2950, 3053 19.0 14.9, 24.2 

Biaxial, POR  (10) 2320 ± 144 2379 2323, 2436 23.0 15.3, 34.5 

[1] Mean ± one standard deviation. 

 

 

 

Table 5.4.2.1: Measured strength statistics and 90% confidence intervals for AFN12 single crystal 

NiAl tested in biaxial flexure. 

Stress 

Solution 

Mean[1] 

Strength 

MPa 

Characteristic 

Strength, σθ 

MPa 

90% 

Confidence 

Bands on σθ 

Weibull  

Modulus 

m 

90% 

Confidence 

Bands on m 

Approximate 470 ± 109 511  466, 559 5.3 3.7, 7.6 

Series 431 ± 100 469  428, 513 5.3 3.7, 7.6 

Approximate[2] 
477 ± 111 519  473, 568 5.3 3.7, 7.6 

Series[2] 
439 ± 102 478  436, 524 5.2 3.6, 7.4 

[1] Mean ± one standard deviation. 

[2]. Estimate includes the effect lateral pressure as calculated from Eq. (135). 
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The strength distributions of the uniaxial and biaxial flexure strength data are shown in Figure 

5.4.2.1.  The mean strength of the NiAl biaxial test specimens is 431 MPa.  The Weibull modulus 

is 5.3, implying the same flaw population as measured in the uniaxial specimens.  The maximum 

likelihood method was used to calculate the Weibull parameters (Jakus et al. 1981 and 

Sonderman et al. 1985).  Also included in the table in the effect of lateral pressure on the plate 

deflection, assuming that the isotropic solution in Eq. (135) is applicable.  

 

5.4.3 Macroscopic Failure Analysis of the Disk Test Specimens 

One advantage of biaxial specimens is the multiplicity of planes subjected to large stress over a 

large area, thereby sampling many flaws and allowing any cleavage plane to induce fracture and 

be followed for a macroscopically observable distance. 

 

The disk test specimens exhibit a distinct, macroscopic failure pattern as shown in Figure 5.4.3.1.  

Fracture, as viewed on the {100}, typically occurs along a single direction and rapidly branches in 

three other directions: one at 90o to the main direction and two other directions that form a 90o 

angle to each other and 60o and 150o angles to the initial direction.  Essentially the traces on the 

{100} form two sets of orthogonal directions rotated 60o to each other.  The pattern is repeated 

across the disk in a varying degree until the edges are approached and the pattern becomes 

conchoidal. The angles between the <100> and the observed cleavage traces are listed in Table 

5.4.3.1 and plotted with the 90% confidence intervals on a (001) pole figure in Figure 5.4.3.2 for 

eight of the test specimens.  The macroscopic cleavage directions in the (001) nearly correspond 

to the <310> directions.  However, because the planes forming the directions are not normal to 

the (001) surface, the actual cleavage planes are located in the interior of the pole figure along the 

line emanating from the <310> directions intersecting the perimeter of the pole figure (i.e. the 

<310> “great circle”).  This implies that the preferred set of macroscopic planes for crack 

extension is not one of the typical {001}, {110} or {111} sets. 

 

The radial failure position and angle relative to the <100> direction was measured on eight of the 

disk surfaces, as shown in Figure 5.4.3.3.  The data is plotted in a single quadrant as the crystal 

symmetry repeats every 90o.  The radial positions of failure relative to the support ring radius 

ranged from 0.20 to 0.55 wherein the stresses are greater than 70% of the maximum, equibiaxial 

stress.  The minimum angle from the <100> associated with the dendrite growth direction to the 
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Figure 5.4.2.1: Weibull distributions for the flexural strength of AFN12 single 

crystal NiAl.  Included in the plot are the data for the <100> and <110> 

tested in three and four-point flexure (beams) and the {100} tested in biaxial 

flexure (disks) by application of a uniform pressure. 
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Figure 5.4.3.1: NiAl single crystal disk test specimens failed by application of 

a uniform pressure: (a) specimen B11 and (b) specimen B5. 

 

(a) 

(b) 
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Figure 5.4.3.2: Standard (001) pole figure showing the macroscopic failure 

directions exhibited by AFN12 single crystal NiAl biaxial test 

specimen.  Arrows on the perimeter indicate the measured mean 

directions and standard deviations of the cleavage directions 

observed on the (001). 
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Table 5.4.3.1: Macroscopic cleavage directions and 90% confidence intervals in the (001) plane of 

single crystal NiAl tested in biaxial flexure. Measurements are clockwise from the ][ 001  direction.  

Also listed are the angles from the ][ 001  to the <310>. 

 

Mean, degrees 16 ± 3 75 ± 4 106 ± 3 166 ± 1 

90% Confidence 2 2 2 1 

Angles to <310> 18 72 108 162 

 

 

 

failure location ranged from 18o to 62o with a mean of 41 ± 16o.  Also plotted in Figure 5.4.3.3 in 

the direction of the macroscopic cleavage plane relative to the <100> dendrite growth direction.  In 

all but two of the test specimens, the minimum angle was toward the <310> associated with the 

<100> direction corresponding to the dendrite growth direction instead of its compliment.  This 

implies a preference or bias in the properties toward the <100> associated with dendrite growth.   

 

The bias of the failure position to the <110> directions implies that the larger tangential stress or 

lower strength associated with the <110> influences failure.  Because the <110> are orthogonal in 

the {001}, the <110> directions are subjected to both the radial and tangential stress components 

at any radial location along a <110>.  Thus, failure would be expected to initiate and propagate 

along the <110> radial directions if the <110> is the weak plane and the maximum principal stress 

dominated failure.  However, as shown in Table 5.4.3.1 and Figure 5.4.3.2, the macro extension 

plane is not the <110> and either a weaker cleavage plane exists or the combined stresses cause 

propagation elsewhere.  

 

Particularly noteworthy is a slight jog in the direction of crack propagation at the failure origin.  The 

failure origins observed in the flexure specimens are finite and three-dimensional HfC inclusions. 

 

Thus, the jog may be a result of the failure initiating on one side of an inclusion and traveling 

around or through it.  The jogs are relatively small and optical measurement of the associated 

angles was not feasible.  Detail electron fractography is required to determine the exact failure 

location and the cause of the jog.  The failures could initiate within the inclusion, outside of the 

inclusion, or at the inclusion-NiAl interface. 
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Figure 5.4.3.3: Macroscopic failure locations and planes exhibited by AFN12 

single crystal biaxial test specimens. 
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5.4.4 Fractography of the Disk Test Specimens 

As in the flexure test specimens, failure occurred from coarse Hf rich inclusions, as shown in 

Figure 5.4.4.1.  Energy dispersive analysis of the inclusions indicated Hf, Ti and C, as shown in 

Figure 5.4.4.2, implying complex (HfTi)C carbides as in the uniaxial test specimens. 

 

The river marks and tail next to the inclusion imply that fracture initiates along the interface of the 

inclusion at or near tensile surface, Figure 5.4.4.3.  In some cases, a second smaller tail is 

apparent on the other side of the inclusion implying the initiation of a second crack immediately 

after the initial failure.  The primary crack wraps around the inclusion and either meets the 

secondary fracture or jumps across the HfC inclusion as it fails.  Exactly when the inclusion 

fractures is not clear, however, observation of both the uniaxial and biaxial flexure test specimens 

indicate that the inclusions typically fail instead of pulling out of the NiAl matrix, as shown in Figure 

5.4.4.4. 

 

The initiation at the interface between the inclusion and the matrix can be explained by the 

residual stresses that result from the thermal and elastic differences between HfC and NiAl.  The 

residual stresses are estimated and discussed in Section 6. 

 

In order to measure the jog angle relative to the applied stress and crystal structure and determine 

its source, the tensile surface of eight of the specimens were observed with in the electron 

microscope.  A typical jog and the corresponding fracture surface are shown in Figure 5.4.4.5.  

The inclusions are typically located at one end of the jog with the initiation of fracture occurring on 

the jog side of the inclusion.  Thus the jog is not caused by the crack passing through or initiating 

within the inclusion.  The average angle of the jog direction relative to the <100> and the radial 

direction of the disk are summarized in Table 5.4.4.1 and are plotted in Figure 5.4.4.6. The jogs 

 

 
 

Table 5.4.4.1: Orientation of failure relative to the crystal structure and stress state. 

 

Jog Length 

µm 

Jog Angle 

From <100> 

Degrees 

Jog Angle from 

Radial Direction 

Degrees 

62 ± 28 44 ± 5 45 ± 34 
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Figure 5.4.4.1: Failure origin in an AFN12 single crystal biaxial test specimen. 
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Figure 5.4.4.2: Energy dispersive analysis of a failure origin in an AFN12 

single crystal NiAl biaxial test specimen.  Hafnium, titanium and 

carbon are indicated, implying (HfTi)C. 
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Figure 5.4.4.3: Detail of a failure origin in an AFN12 single crystal NiAl biaxial 

test specimen.  A mixture of secondary and back-scattered 

electrons were used for imaging. 
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Figure 5.4.4.4: Mating fracture surfaces of an AFN12 single crystal biaxial 

test specimen.  Fractured inclusion can be observed on both 

halves, implying inclusion fracture instead of pullout. 

 

(a) 

(b) 
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Figure 5.4.4.5: (a) Tensile surface of an AFN12 single crystal NiAl biaxial test 

specimen and (b) corresponding fracture surface.  Jog angle 

relative to the macroscopic failure plane and <100> etch lines that 

resulted from chemical milling are shown. 
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have a mean length of 62 ± 28 µm on the tensile surface and extend along a 44 ± 5o angle to the 

<100> in the surface of the plate, which corresponds to the <110> trace.  The jog planes are 

nominally normal to plate surface, implying jog planes of {110} orientation.  Note from Figure 

5.4.4.6 that both tangentially and radially oriented <110> jog planes have produced failure (three 

of radial orientation and five of tangential orientation), implying that neither the radial or tangential 

stress component-dominated failure.  As noted previously, the radial and tangential stresses at 

the failure locations were within 70% of the equibiaxial stress and therefore similar.  Also 

summarized in Table 5.4.4.1 is the jog angle relative to the radial direction in the disk test 

specimen.  Note that the standard deviation of the angle of failure relative to the radial direction is 

quite large as a result of the failure planes being either nearly radial or tangential.  Thus failure 

appears to be controlled locally by the crystal structure and location of the largest flaw dimension 

in a multiaxial stress state in which the principal stresses are nearly equal.   

 

Apparently fracture initiates at the interface of the HfC and NiAl matrix on the {110} and rapidly 

branches onto a set of high-index planes associated with the <310> trace in the {100}.  The <110> 

extension on the plate surface occurs predominantly on the initiation side of the inclusion.  Little 

extension on the other side of the inclusion is observable on the plate surface because the crack 

transits onto the <310> trace as it wraps around or travels through the inclusion.  One explanation 

for the branching is the multiplicity of low index planes available for the crack to extend on and 

thereby dissipate energy.  Figure 5.4.4.7 shows the idealized fracture pattern based on the 

average crack angles measured. 
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Figure 5.4.4.6: Failure locations in an AFN12 single crystal NiAl biaxial test 

specimen.  Symmetry was invoked and the positions plotted in a 

single quadrant.  The lines within the circles represent the local 

direction of failure (i.e. the jog direction) extending from the HfC 

origin. 
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Figure 5.4.4.7: Generalized schematic failure pattern in AFN12 single crystal 

biaxial test specimens.  Angles between the directions illustrated 

are based on average measurements on the {100}. 
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CHAPTER 6: VERIFICATION OF THE ANISOTROPIC RELIABILITY MODEL     

The formulations developed in Chapter 3 and the experimental results detailed in Chapter 5 

provide a basis for verification of the reliability model given in Eq. (74).  For isotropic materials, 

Eqs. (88) and (89) are generally considered capable of predicting four-point strengths from three-

point strength data for brittle, isotropic materials such as polycrystalline ceramics and glasses.  

The next section investigates that capability. 

 

6.1 RELIABILITY-BASED STRENGTH PREDICTIONS FOR ISOTROPIC 

MATERIALS     

The equivalent stress failure criteria given in Eqs. (29) to (32) and (44) and (45) were employed to 

predict the biaxial strength of the WC disk test specimens from the measured strength 

parameters of the smaller, uniaxial flexure specimens (Tables 5.4.1.1 and 5.2.1.1). 

The resulting strength predictions from the uniaxial data and the associated 90% confidence 

bands are compared to the 90% confidence bands of the measured biaxial data in Figures 6.1.1 

for the SIFCs given in Equations (21) to (23).   

 

The PIA and the maximum principal stress criteria, which are based only on the principal stresses, 

were reasonable predictors of the materials measured biaxial flexure strength, despite the in-

plane shear stresses generated in the outer region of the plate.  The normal stress criterion, which 

implies that the normal stresses at any angle reduces reliability, was the most conservative of any 

criteria considered and underestimated the data by approximately 8%.  The ability of the fracture 

mechanics failure criterion to predict the multiaxial strength data was dependent upon the SIFC 

chosen, however, for all the SIFCs considered, the coplanar energy release rate was a slightly 

conservative estimator of the biaxial strength data.  In contrast, the noncoplanar energy release 

rate and the maximum hoop stress factor resulted in predictions not statistically significantly 
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different from the biaxial strength data.  Use of the SIFCs of Smith et al. (Smith et al. 1967) 

resulted in more conservative estimates from the shear sensitive failure theories.  The criteria of 

Batdorf for Griffith cracks and notches resulted in underestimates (-7%) similar to the coplanar 

energy release rate (-6%) and the normal stress criterion.  The characteristic strength predictions 

were noted to be independent of the value of h used (for h = 0.5 to 20), however, the scale 

parameter was a function of h. 

 

6.2 RELIABILITY-BASED STRENGTH PREDICTIONS FOR ANISOTROPIC 

MATERIALS: UNIAXIAL STRESS STATES     

As shown in Section 3.4.2, the predicted characteristic strength of a uniaxial test specimen is 

independent of failure criterion and only a function of the ratio of effective areas.  To determine the 

applicability of the scaling equations (i.e. Eqs. (89) and (95) in Section 3.4.1 and 3.4.2) to this single 

crystal NiAl alloy, the average Weibull modulus in Table 5.2.2 (m ≈ 5.5) was used to calculate the 

effective areas and predict the four-point flexural characteristic strength from the three-point flexural 

data.  The results are listed in Table 6.2.3.  The predictions are well with the standard deviations of 

the experimental results for both the <100> and the <110> orientations.  Thus, the probability of 

failure for uniaxial flexural of this NiAl can adequately be described by 

 

( ) 

















−−= ∫

A

m

1o

1
FA dAexp1P

θσ
σ

    (138) 

or as follows in crystallographic notation 

 



















−−= ∫

><

><

A

m

hklo

hkln
FA dAexp1P

σ
σ

    (139) 

 

or in terms of a “crack density coefficient” (Batdorf and Crose 1974) as 

 

( ) 





−−= ∫ ><

A

m
hklnwsFA dAkexp1P σ     (140) 
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where the subscript <hkl> specifies the crystal direction parallel to the applied stress and kws is a 

crack density coefficient now dependent on the stress orientation: 

 

( ) m
hklowsk −

><= σ .    (141) 

 

The scaling function becomes 

 

( ) ( ) m/

hkleehkl AA 1
1221 ><>< =θθ σσ .   (142) 

 

Note that this material does exhibit yield in compression at approximately 1650 MPa in the <100> 

and at 1050 MPa in the <110> direction (Noebe and Garg 1995).  It is unknown if this phenomenon 

is volume dependent, however, deformation is typically not viewed as a volume dependent process.  

Thus, for a sufficiently small test volume subjected to tension, yield, rather than brittle fracture, might 

occur.  Equations (89) and (142) indicate that a miniature, <100> three-point flexure specimen with 1 

by 1.5 mm cross-section and a 6 mm support span would fail by brittle fracture at a tensile stress 

greater than the compressive yield stress 90% of the time.  The implication is that very localized (e.g. 

contact) stresses, such as those at the root of a blade or vane, might cause yield rather than 

fracture. 

 

 

 

Table 6.2.3: Measured and predicted strength for AFN12 single crystal NiAl tested in uniaxial flexure. 

 

Orientation 

and 

Failure Criterion 

Measured 

Characteristic 

Strength 

σθ , MPa 

90% 

Confidence  

Bands, σθ 

Predicted 

Characteristic 

Strength 

σθ 

<100> 1094 1032 to 1158 1040 

<110> 689 642 to 735 653 
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6.3 ESTIMATION OF THE SCALE PARAMETER 

The estimated scale parameter constants are given in Table 6.3.1 for maximum principal stress 

criterion, the PIA criterion and the normal stress criterion. The computer code used to make the 

estimates is given in Appendix E.  For the more advanced criteria, values of σo<100> and σo<110> 

satisfying Equations (100) and (101) could not be numerically determined by using the form of 

Equation (98) to describe the scale parameter.  In order to determine if another function describing 

the scale parameter as a function of orientation was more tractable, several other functions were 

considered without success: 

 

( ) ( ) ( ) ><><><>< ±+= 100o
2

110o
2

100ohkl)100(o 2sin2cos σΘσΘσΘσ  

( ) ( ) ( ) ><><><>< ±+= 110o
2

110o
2

100ohkl)100(o 2sin2cos σΘσΘσΘσ  

( ) ( ) ( ) ><><><><>< ±+= 100o110o
2

110o
2

100ohkl)100(o 2sin2cos σσΘσΘσΘσ    (143) 

( ) ( ) ( ) ( ) )(cossin2sin2cos 22
110o

2
110o

2
100ohkl)100(o ΘΘσΘσΘσΘσ ><><><>< ±+=  

( ) ( ) ( ) ( ) )(cossin2sin2cos 22

110o

100o2
110o

2
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σ
σ

ΘσΘσΘσ
><

><
><><>< ±+=  

 

However, it was noted that if the degree of strength anisotropy was reduced such that σo<110> /σo<100> 

≥ 0.8, solutions for σo<100> and σo<110> could be found. 

 

 

Table 6.3.1: Scale parameters estimated from Eqs. (98), (100) and (101) for various failure criteria. 

 

Failure Criterion 
><100oσ , MPa.(mm2) m1  

><110oσ , MPa.(mm2) m1
 

Maximum Principal 2516 1574 

PIA 2516 1574 

Normal Stress 4038 976 

Coplanar Energy Release Rate ---- ---- 

Noncoplanar Energy Release Rate ---- ---- 

Maximum Hoop Stress ---- ---- 
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Although Eqs (100) and (101) could not be solved for the fracture mechanics based failure criteria, 

the scale parameters σo<100> and σo<110> can be estimated by another approach.  If the parameters 

are treated as average values of the strength variation about the unit circle for a uniaxial stress state, 

then the functions can be solved independently as for the PIA model.  This is similar to the approach 

used in Eq. (39) to calculate an average normal stress for the Weibull model.  The new functions are 

 

( )
m/1m2/

100o

e
100 d

fA
2
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><
>< 
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and  
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m/1m2/

0 110o

e
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fA
2

−

><
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= ∫ θ

σ
θ

π
σ

π

θ .    (145) 

The scale parameters estimated from Eq. (144) and (145) are listed in Table 6.3.2. 

 

 

 

Table 6.3.2: Scale parameters estimated from Eqs. (144) and (145) for various failure criteria. 

 

Failure Criterion 
><100oσ , MPa.(mm2) m1  

><110oσ , MPa.(mm2) m1  

Maximum Principal 2516 1574 

PIA 2516 1574 

Normal Stress 1934 1210 

SIFCs Used YI = √π 

YI = √π 

YI = 1.286 

YI = 1.479 

YI = 1.365 

YI = 1.241 
YI = √π 

YI = √π 

YI = 1.286 

YI = 1.479 

YI = 1.365 

YI = 1.241 

Coplanar Energy Release Rate 2051 2097 2028 1283 1312 1269 

Noncoplanar Energy Release Rate 2223 2309 2175 1390 1444 1360 

Maximum Hoop Stress 2265 2375 2205 1417 1486 1379 

Batdorf – Griffith Crack 1985 1242 

Batdorf – Griffith Notch 2230 1395 
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6.4 RELIABILITY PREDICTION FOR ANISOTROPIC MATERIALS: 

MULTIAXIAL STRESS STATES 

 

The probability of failure and characteristic strength of a component subjected to multiaxial 

stresses, such a biaxial disk test specimen, can be estimated from Eqs. (74) and (91).  The 

functions can be applied in the general form or a variety of simplifying assumptions can be used. 

Three cases and the associated assumptions were considered in predicting the strength of the 

disk test specimens from the uniaxial test data: (1) complete isotropy; (2) anisotropic elasticity 

with strength isotropy; and (3) complete anisotropy.  A Weibull modulus of 5.4 was used in the 

analyses because it corresponded to that of the largest test population (i.e. the <110> four-point 

flexure specimens) and the average value for the measured uniaxial and biaxial data.  The 

approximate solution of Okubu (Okubu 1949) was used to minimize the computational time.  

 

6.4.1 Assumption of Complete Isotropy 

 

If the material’s elasticity and strength are assumed to be isotropic, then Eq. (135) applies for the 

stress analysis and Eqs. (82) and (87) apply for the reliability and characteristic strength analyses.  

The resulting strength predictions from the 90% confidence bands on the uniaxial data are 

compared to the 90% confidence bands of the measured biaxial flexure strength data in Figure 

6.4.1.1 for the various failure criteria and the SIFCs given in section 2.5.2.  The computer code 

used to make the estimates is given in Appendix F. 

 

6.4.2 Assumption of Strength Isotropy 

If the strength is assumed to be isotropic but the elasticity anisotropic, Eqs. (114) to (117) or 

(131), (114), (116) and (117) apply for stress analysis depending on whether Okubu’s 

approximate or series solutions are applied.  For the reliability analysis, Eqs. (82) and (87) apply.  

The resulting strength predictions from the 90% confidence bands on the uniaxial data and 

Okubu’s approximate solution are compared to the 90% confidence bands of the measured 

biaxial data in Figure 6.4.2.1 for various failure criteria and the SIFCs given in section 2.5.2.  The 

difference between the predictions in this section and section 6.4.1 reflect the effects of 

anisotropic elasticity in the solution, which improves all the predictions except Batdorf’s criterion 

for a Griffith crack. The computer code used to make the estimates is given in Appendix G. 
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6.4.3 Assumption of Complete Anisotropy 

If complete anisotropy is assumed, Eqs. (114) to (117) or (131), (114), (116) and (117) apply for 

stress analysis depending on whether Okubu’s exact or approximate solutions are applied.  Note 

that this is the most general case and would be expected to best describe single crystal NiAl.  For 

reliability analysis, Eqs. (74) and (91) apply.  The scale parameter is calculated from (100) and 

(101) or (144) and (145).  The resulting strength predictions from the 90% confidence bands on 

the uniaxial data and Okubu’s approximate solution are compared to the 90% confidence bands 

of the measured biaxial data in Figure 6.4.3.1 for various failure criteria and the scale parameters 

in Table 6.3.1 (i.e. Eq. (98).  The prediction based on the scale parameters in Table 6.4.3.2 (i.e. 

from Eqs. (144) and (145)) are given in Figure 6.4.3.2.  The difference between the predictions in 

this section and section 6.3.1 reflect the effects of anisotropic elasticity and strength in the 

solution. The computer code used to make the estimates is given in Appendix H. 

 

6.4.4 Flaw Distribution Anisotropy 

A fourth case, in which an anisotropic flaw distribution exists within an isotropic material, can be 

envisioned.  In such a case Eq. (135) applies for the stress analysis and Eqs. (74) and (91) apply 

for the reliability and characteristic strength analyses.  The strength distribution function would 

have to be determined from experimental measurements of strength as a function of orientation. 
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CHAPTER 7: DISCUSSION OF THE RESULTS 

7.1 DISCUSSION OF THE EXPERIMENTAL RESULTS 

 

7.1.1 Strength and Weibull Modulus 

 

The data in Table 5.2.2.2 and 5.4.2.1 indicate significant strength differences between the three- and 

four-point flexure test configurations for both orientations, and between orientations for the same test 

configuration, implying effects of scale and orientation.  The data also indicates a significant strength 

difference between the uniaxial strength in either the <100> or <110> and the biaxial strength.  

However, significant differences could not be detected between the Weibull moduli for the three- and 

four-point configurations for either orientation, or between orientations for the same configuration, 

implying a statistically homogeneous flaw distribution and an independence of the Weibull modulus 

on crystal orientation.  Also, the Weibull modulus of the biaxial data is not statistically significantly 

different from that of the uniaxial data.   

 

The apparent independence of Weibull modulus as calculated from the MLE (Abernathy et al. 

1983) on test specimen orientation can also be examined from the Gaussian statistics of the data.  

The Weibull modulus of a brittle material can be estimated from Gaussian statistics by using 

(Ritter et al. 1981) 

CV

.
m

21≅      (146) 

 

where CV is the coefficient of variation (i.e. mean divided by the standard deviation).  Thus 

Equation (146) and the nearly identical coefficients of variation in Table 5.2.2.1 also imply that the 

Weibull modulus does not vary with orientation. 

 

This conclusion can be examined further from an analytical standpoint by using a truncated Taylor 

series expansion for estimating the statistics of a random variable that is a function of other 

independent variables (Haugen 1980), and the fracture mechanics equation  
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where SDy is the standard deviation of the y variable, xi is the ith
  independent variable, and KIc is the 

fracture toughness and a the crack length.  Solving Equation (148) for fracture strength and 

Equation (147) for standard deviation of strength leads to 
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Dividing Equation (149) by the expected (i.e. mean) value of strength gives 
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For small standard deviations of crack size or a single flaw population, Equation (151) implies that 

the coefficient of variation of strength, and thus the Weibull modulus, is approximated by that of 

the fracture toughness.  Note that the mean fracture toughness of single crystal NiAl varies with 

orientation (Chang et al. 1992) but the CVs do not.  To further illustrate the relationship between 

CV and fracture toughness, the CVKIc for several brittle ceramics and binary single crystal NiAl is 

plotted in Figure 7.1.1.1.  No strong function of CVKIc with fracture toughness, as measured with 

the single-edged-precracked-beam technique (ASTM C 1421 1999, Nose and Fuji 1988), is 

exhibited, implying that Weibull modulus via Equation (146) is not dependent on the fracture 

toughness.  The CVKIc is probably more a function of the material’s inherent variability and the test 

error than of the fracture toughness.  Thus, Weibull modulus should not vary with orientation in a 

material with fracture toughness anisotropy, if the same flaw population controls failure. 
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Figure 7.1.1.1: Coefficient of variation of the fracture toughness of various 

commercially available ceramics.  No correlation between fracture toughness 

and coefficient of variation is apparent. 
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Thus, the strength of single crystal NiAl is a function of test specimen orientation, test specimen 

size and stress state for tensile loading.  However, the Weibull modulus is not a function of test 

specimen orientation, size or stress state for tensile loading.  This is in agreement with the 

generalized Weibull model proposed in Eq. (74).  

 

7.1.2 Correlation of billet Chemistry to Flexural Strength 

Because C is a “tramp” element in the alloy and its presence results in strength-limiting HfC 

inclusions, the strength of a given billet was speculated to correlate to the carbon content: smaller 

or fewer HfC inclusions might develop for decreased carbon content.  Carbon content of the billets 

and an additional billet (HP252) believed to be of low carbon content (Darolia 1996) were 

measured.  The data is summarized in Table 7.1.2.1 and is plotted in Figure 7.1.2.1 along with 

90% confidence intervals.  The average strength as a function carbon content is shown in Figure 

7.1.2.2. No trend is detectable and the strongest billets have similar carbon content as the weak 

billets.  Improvement of the NiAl’s strength might be pursued by reduction of Hf. 

 

 

 

Table 7.1.2.1: Billet chemistry (weight %) and <100> four-point flexure strength with 90% 

confidence intervals. 

 

 

Ingot 

Designation 

 

Ni 

 

Al 

 

Hf 

 

Ti 

 

Si 

 

C 

 

O 

Fracture 

Strength 

MPa 

2429 66.4 29.7 2.2 1.1 0.082 0.0034 0.0044 1298 ± 167 

2439 66.5 30.3 2.1 1.1 0.110 0.0041 0.0047 904 ± 106 

2454 66.4 30.0 2.4 1.2 0.120 0.0030 0.0043 904 ± 116 

2461 66.7 30.0 2.1 1.1 0.120 0.0032 0.0033 915 ± 161 

2464 68.3 28.4 2.1 1.1 0.120 0.0030 0.0030 948 ± 198 

2471 69.3 26.7 3.2 1.4 0.120 0.0034 0.0046 1228 ± 201 

2474 66.4 30.3 2.2 1.1 0.074 0.0035 0.0050 1053 ±315 

HP252 66.4 30.2 2.2 1.1 0.067 0.0039 0.0043 1226 ± 33 
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Figure 7.1.2.1: Mean carbon content (weight %) and 90% confidence interval 

for the <100> billets. 
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7.1.3 Test Specimen Preparation 

Ideally, better specimen preparation is needed to minimized machining damage and maximize the 

number of failures from inherent flaws.  This is especially true if NiAl is to be used as a structural 

component.  It is recommended that lower voltages be used during EDM in order to minimize 

pitting.  Further, the chemical milling procedure did not eliminate EDM damage from as-machined 

surface as shown in Figures and 4.1.2.1 and 5.3.1, but tended to extend the existing pits into the 

material.  However, elimination of EDM pits by hand sanding prior to chemical milling did 

eliminated EDM related failures.  Unfortunately, this is not a practical approach for manufacturing 

components.  A procedure such as electro-polishing might produce a smoother surface from a 

pitted surface made via EDM.  Also, if possible, a grinding procedure should be developed.  

However, typical uniaxial grinding of ceramic materials does leave damage in the direction 

transverses to the grinding direction, and may do so in NiAl’s.  

 

7.2 DISCUSSION OF THE PREDICTIONS 

The predictions shown in Figures 6.4.1.1 to 6.4.3.1 imply that the normal stress criterion (NS), in 

which the normal stress acting on each plane of the crystal reduces reliability, is the best choice 

regardless of assumptions regarding anisotropy.  Further, the best agreement occurs if the 

strength associated with the strong <100> directions is ignored and strength properties associated 

with the weak <110> direction are applied (see Fig. 6.4.2.1) with anisotropic stress analysis.  This 

implies that either the strong directions do little to enhance reliability or that a discrepancy 

between the model and the data exists.  Because disk data was taken from only one billet, one 

source of discrepancy between the model and the disk data is billet-to-billet variation.  The effect 

of billet-to-billet variation can be investigated somewhat by eliminating the billets that exhibited 

significantly greater strengths (numbers 2429, 2471 and 2474 in Figure 5.2.2.1 and Table 7.1.2.1) 

from the flexural test data used as input into the model.  The resulting predictions for elastic and 

strength anisotropy are only slightly improved, as shown in Figure 7.2.1.  The normal stress 

criterion is the only criteria exhibiting a statistically insignificant difference between measured and 

predicted strengths.  
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Another aspect of statistical variation from billet-to-billet that affects the predictions is the 

estimated Weibull modulus.  For the largest test population (i.e. the <100> four-point flexure 

specimens), the estimated Weibull modulus is between 4.3 to 6.8 with 90% confidence, in 

relatively good agreement with the estimated parameter for the disk test specimens (5.3).  Thus 

little justification exists for varying Weibull modulus in the predictions. 

 

Interestingly, none of the other failure theories reviewed predict as much weakening of a material 

due to a second principal stress as the Weibull based theories (Giovan and Sines 1979).  Another 

aspect of the material behavior that may have contributed to the discrepancy between the 

predictions employing strength anisotropy and the biaxial test data is the consistent failure of the 

disk test specimens along the <110> planes.  Such a failure pattern implies a dominance of the 

<110> strength properties in biaxial stress states and an influence on the strength predictions. 

 

Note also that in the highly stressed central region of the disk test specimens, the principal 

stresses are nearly equal thereby subjecting all planes to large nearly equal normal stresses.  

Although the model accounts for the stress variation, it assumes randomly distributed planar 

flaws.  However, based on the fractography, the actual flaws are three-dimensional inclusions.  

Conceptually this implies a flaw on each crystal plane thereby allowing a higher frequency of a 

large flaw dimension to intersect a highly stressed or weak direction and thereby allowing the 

weak planes to dominate strength.  However, because the measured uniaxial data used in the 

model is a sample of the same flaw distribution on a specific plane, the effect should be taken into 

account for uniaxial cases, as the state of stress does not change with test specimen size.  This is 

supported by the accuracy of the predictions for the uniaxial cases.  Thus fault does not seem to 

lie with the origins of the model, but more with the choice of flaw type.  

 

However, for multiaxial cases, the three-dimensionality of the flaws implies that all planes at the 

point of a flaw are exposed to a similar flaw size distribution and the stresses resolved on all 

planes should reduce reliability.  This is supported by the ability of the normal stress criterion to 

predict biaxial strength and explains why the PIA and MP criteria do not.  However, this does not 

explain the poor results for the shear sensitive theories.   

 

 

 

NASA/TM—2002-210519           142



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2.2: Effect of flaw type on the loading mode resulting from 

application of a uniaxial stress state: (a) randomly oriented planar 

crack and (b) three-dimensional inclusion. 
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Figure 7.2.3: Illustration of an inclusion shielding a crack from an applied, 

remote shear stress. 

 

HfC 
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The poorer agreement between the data and predictions using shear sensitive criteria, and the 

inability to solve for anisotropic scale parameters for shear sensitive failure criterion, may also be 

explained by the nature of the flaws.  Because the flaws are three-dimensional, uniaxial test data 

tends to sample a cross-section of a three-dimensional flaw by way of the principal stress instead 

of sampling randomly oriented planar flaws that are inclined to the uniaxial (principal stress) and 

subject to shear and normal stresses.  Thus the data is unrepresentative of shear induced failure, 

as shown in Figure 7.2.2, and shear sensitive criteria are less applicable.  Further, inclusions tend 

to resist shear as they “bridge” any crack emanating from them and thereby “shield” the crack tip 

as shown in Figure 7.2.3. 

 

It might be speculated that materials with many randomly oriented planar flaws always fail from a 

flaw oriented normal to the applied stress.  This would be the case if all the flaws were of the 

same size, however, a random size distribution results in some large flaws at significant angles to 

the applied stress and thus shear can influence the sampling in uniaxial strength testing.  For 

three-dimensional flaws, the off axis shear may be ineffective as compared to the principal stress. 

 

Because the flaws are three dimensional, the failure criterion for open pores given by Babel and 

Sines (Babel and Sines 1968) might appear applicable.  However, the flaws causing failure are 

cavities filled with HfC and therefore carry tractions.  Further, the failure criterion for pores predicts 

equibiaxial strengthening and should result in prediction larger than those for planar cracks.  

 

Another aspect of the inclusions that may have resulted in the failure locations being associated 

with <110> directions is residual stresses generated by an inclusion in matrix. 

7.3 Residual Stresses 

The HfC inclusions are well bonded to the NiAl matrix, as described above, and have different 

thermal and elastic properties than the matrix.  As a result, when the NiAl billets are cooled from 

the heat treatment temperature, residual stresses should be developed within and around the 

inclusions.  The magnitude of these thermo-elastic stresses can be estimated from the models of 

Selsing or Bussem and Lange (Selsing 1961, Bussem and Lange 1966) if isotropic behavior is 

assumed.  The reported properties of polycrystalline HfC are quite variable, with the reported 

elastic modulus varying from 316 to 461 GPa.  The properties of HfC are summarized in Table 

7.3.1 and those of NiAl alloys in Table 1.1.1.  The single crystal NiAl considered herein is heat-

treated at ~1000oC prior to cooling to room temperature, however, the lower limit for bulk creep 
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deformation is considered to be ~800oC (Nathal 1999) and thus a temperature difference of 775oC 

was used in the calculations.  This estimate is probably high as local deformation and stress 

relaxation might occur on cooling.  The resultant residual stresses are summarized in Table 7.3.2 

for both the polycrystalline properties of NiAl and the elastic moduli associated with specific single 

crystal directions.  The resultant stresses are estimated to be quite large, with the peak tensile 

stress for any assumed properties occurring in the matrix at the interface.  In terms of crystal 

direction the peak stress are associated with the stiffest directions, this being the <110> in the 

plane of the plate and the <111> in general.  The residual stresses should interact with the applied 

macroscopic stresses; however, determination of the exact, net resultant stresses requires 

analysis of the general cases of an inclusion in a single crystal matrix. 

 

Based on the estimated residual stresses, the location of fracture initiation seems to be most 

probable at the tensile surface where on the {110} plane intersects an inclusion.  

 

 

 

Table 7.3.1: Mechanical Properties of HfC (MCIC 1979).  

 

Young’s 

Modulus, E 

GPa 

Poisson’s 

Ratio, ν 

Coefficient of 

Thermal Expansion 

x 10-6/oC 

316 to 460 0.17 to 0.18 6.6 to 7.3 
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Table 7.3.2: Estimated residual stresses at the interface of an HfC inclusion in an NiAl matrix.  

The stresses were calculated using the data in Table 7.3.1 and Table 1.1.1, and the equations of 

Selsing (Selsing 1961). 

 

 

NiAl Matrix 

 

HfC Inclusion 

 

Matrix 

Properties 

Considered 
Radial Stress 

σrr 

MPa 

Tangential Stress 

σθθ 

MPa 

Radial Stress 

σrr 

MPa 

Tangential Stress 

σθθ 

MPa 

Polycrystalline -932 466 -932 -932 

<100> -583 291 -583 -583 

<011> -929 464 -929 -929 

<111> -1162 581 -1162 -1162 
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CHAPTER 8: SUMMARY 

A general methodology for analyzing the reliability of brittle single crystals was developed and 

experimentally investigated.  Procedures and analyses for specimen preparation, uniaxial and 

multiaxial testing and failure source identification were developed in order to supply verification 

data for the model.  The reliability model employs the Weibull distribution and strength or fracture 

mechanics based failure criteria.  The results of this study can be summarized as follows: 

 

1) A procedure for preparing the surfaces single crystal NiAl test specimens was developed.  

 

2) The elastic moduli in the <100> and <110> directions were measured by impulse excitation.  

The measured values agreed well with published values for binary NiAl. 

 

3) The uniaxial flexure strength in three and four-point flexure were determined for <100> and 

<110> orientations.   

 

4) A test apparatus for measuring the biaxial flexure strength of isotropic and anisotropic 

materials was developed and verified.  The test rig subjects a circular plate to a uniform 

pressure and is capable of generating equibiaxial stresses within ~2% of theoretical 

predictions for cubic single crystal NiAl. 

 

5) The formulas for estimating the standard deviations of strain and stress from apparent strains 

measured with stain gage rosettes were derived. 

 

6) The displacement solution for an anisotropic plate subjected to uniform pressure was 

generalized to the case of variable radius, pressure and thickness.  The resultant curvature 

functions were derived in a general format more commonly used for plate analysis. 

 

7) The multiaxial strength of single crystal NiAl was measured for the {100} orientation. 

 

8) A reliability model was developed for brittle materials that exhibit elastic and strength 

anisotropy.  The model was used to predict the characteristic strength associated with uniaxial 

and biaxial stress states. 
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9) An equivalent stress solution for the coplanar energy release rate of an anisotropic material 

was derived. 

 

10) The source of failure in AFN12 single crystal NiAl was identified via fractographic and energy 

dispersive analyses.   
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CHAPTER 9: CONCLUSIONS 

(1) The source of failure in AFN12 single crystal NiAl was identified to be either machining 

damage or coarse, three-dimensional HfC inclusions.  Biaxial test specimens cleaved on the 

{110} plane, implying a dominance of that plane in the strength of the material when subjected 

to multiaxial stresses. 

 

(2) Fracture in a biaxial stress state occurs on the {110} because of four factors: (1) the low 

fracture toughness (Chang and Darolia 1992), (2) the higher residual stresses associated with 

the stiff <110>, (3) the large area of {110} planes subjected to large applied stresses, and (4) 

the three-dimensional shape of the inclusions. 

 

(3) The three-dimensional flaw shape has specific implications on the measure characteristic 

strength.  In uniaxial stress states, the effects of off-axis shear are mitigated because the 

nominal cross-section of the flaw is subjected to the principal stress regardless of orientation.  

In contrast, planar flaws of random size are subjected to a mix of shear and normal stress 

depending on orientation of the critical flaw.  Thus, uniaxial test data does not detect the shear 

sensitivity of the brittle materials failing from inclusions.   

 

(4) The flaw shape also has implications on multiaxial failure.  Because all crystal planes at the 

point of a three-dimensional flaw intersect the cross-section of the flaw, the weak crystal 

planes tend to dominate the failure behavior in near equibiaxial stress states.  Further, 

because the flaws are inclusions, they may “mechanically” resist remotely applied shear.  

Thus shear-sensitive criteria are less applicable than criteria related to normal stresses. 

 

(5) EDM machining leaves significant surface damage on test specimens.  A significant amount 

of this damage remains even after chemical milling.  Removal of the EDM layer by sanding 

with 400 grit silicon carbide paper prior to chemical milling produced acceptable surfaces on 

test specimens.   

 

(6) An effect of stressed test volume and test specimen orientation exists for AFN12 single crystal 

NiAl.  The effect of specimen scale on the probability of failure and characteristic strength for 

uniaxial stresses can be described by the Weibull distribution. 
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(7) No statistically significant difference in Weibull moduli between <110> and <100> orientations 

could be detected at 90% confidence, implying that the Weibull modulus is not a function of 

orientation.  Analytical derivations support this conclusion.  

 

(8) The biaxial strength of AFN12 single crystal NiAl is significantly less than that measured with 

uniaxial test specimens of similar dimensions.  The Weibull modulus of the biaxial test 

specimens was not statistically significantly different from that of the uniaxial test specimens.  

 

(9) The same flaw population and failure mechanism (brittle failure without macroscopic ductility) 

controls failure in both uniaxial and biaxial test specimens.  Cleavage in biaxial stress state 

appears to initiate on the <110> plane and rapidly branch in the <310> directions. 

 

(10)  The displacement of a circular, single crystal NiAl plate subjected to a uniform pressure can be 

accurately described by the solutions of Okubu (Okubu 1949).  For practical purposes, the 

approximate solution is adequate for the estimation of stress and strain in engineering 

applications. 

 

(11)  The fractography and predictions point out the critical nature of understanding the flaw type in 

modeling the brittle failure of single crystals.  Inclusions interact with remote stresses differently 

than planar cracks. 

 

(12)  Based on the current data, the best design approach for AFN12 single crystal NiAl components 

involving multiaxial stresses is to employ anisotropic stress analysis with the normal stress 

criterion and <110> strength statistics in the reliability model.  Adequate results can also be 

attained by using anisotropic strength and elasticity with the normal stress criterion in the 

reliability model. 
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CHAPTER 10: RECOMMENDATIONS AND FUTURE WORK 

Based on the present analytical and empirical research, the following extension of the present 

investigation recommended: 

 

(1) Multiaxial testing of additional billets of AFN12 {100} single crystals.  The addition of data from 

other billets would clarify the role of billet-billet variation in the predictions. 

 

(2) Multiaxial testing of different orientations (e.g. {110}) of single crystal NiAl in order to test 

different and more general cases. 

 

(3) Determine functions that allow a generalized scale parameter as a function of orientation to 

be determined for advanced fracture mechanics criterion such as the coplanar energy release 

rate. 

 

(4) Develop an equivalent stress failure criterion for an inclusion embedded in a cubic matrix 

 

(5) Optimization of the materials strength and Weibull modulus by using the test and 

fractographic methods applied herein.  Ultimately, processing refinement that eliminate 

Hafnium carbides are required. 

 

(6) Testing of miniature flexure specimen to determine of localized yield can occur prior to 

fracture via brittle cleavage. 

 

(7) Apply the model to other cases such as strength anisotropy due to machining damage 

associated with uniaxial grinding. 
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APPENDIX A: BIAXIAL TEST APPARATUS 

A.1 DESCRIPTION OF THE TEST APPARATUS 

An assembly drawing for the biaxial flexure test apparatus capable of applying a uniform pressure 

to a disk test specimen is shown in Figures A.A.1 and A.A.2.  Design drawings of the components 

for testing a 25.4 mm disk test specimen are shown in Figures A.A.3 to A.A.6.  The rig consists of 

a test chamber, reaction ring and cap, capacitance extensometer6, and oil inlet and drain ports.  

The desired pressurization cycle is supplied to the test chamber and specimen via a hydraulic 

actuator placed in line with a servo-hydraulic actuator connected to a closed loop controller7.  The 

feedback to the controller is supplied by a commercial pressure transducer8 connected to the oil 

inlet line.  Although the chamber could be pressurized manually via a hydraulic hand pump, the 

use of a servo-hydraulic actuator and closed loop controller allows any load rate or load cycle to 

be applied. 

 

The test chamber and cap are 304 stainless steel, and the reaction ring is either cold rolled, half-

hard copper or an appropriate material (e.g. steel) depending on the pressures required for 

specimen failure.  The pressures required to fail the tungsten carbide specimen (~21 MPa) 

required a steel disk.  Copper, having a lower elastic modulus and being somewhat ductile, might 

be used to accommodate any minor misalignments or specimen curvatures in as-processed 

specimens or very compliant specimens.  The hydraulic oil is contained on the compressive face 

of the specimen by a nitrile O-ring9 retained in a groove.     

 

A 4340 steel disk test specimen design used for rig verification is shown in Figure A.A.7. 

 

 

 

 

                                                           
6 Bentley-Nevada Corp., Minden, Nevada. 
7 Model 8521, Instron Corp., Canton MA. 
8 Model 204, Setra Corp., Acton, MA. 
9 Parker, #5-273, 70 Durometer Buna-N compound N507-70. 
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Figure A.A.2 Section view assembly drawing for a biaxial test apparatus 
capable of applying a uniform pressure to a disk test specimen. 
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Figure A.A.3: Test chamber for a biaxial test apparatus capable of applying a 
uniform pressure to a 25.4 mm disk test specimen.  Units are in inches for 
ease of machining and minimization of cost. 

 



 

NASA/TM—2002-210519 168 

 

 

Figure A.A.4: Test chamber cap for a biaxial test apparatus capable of 
applying a uniform pressure to a 25.4 mm disk test specimen.  Units are in 
inches for ease of machining and minimization of cost. 
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Figure A.A.5: Test chamber reaction ring for a biaxial test apparatus capable 
of applying a uniform pressure to a 25.4 mm disk test specimen.  Units are in 
inches for ease of machining and minimization of cost. 
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Figure A.A.6: Test chamber centering ring for a biaxial test apparatus capable 
of applying a uniform pressure to a 25.4 mm disk test specimen.  Units are in 
inches for ease of machining and minimization of cost. 
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Figure A.A.7: 25.4 mm disk test specimen.  Units are in inches for ease of 
machining and minimization of cost. 
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A.2 SEAL ANALYSIS 

The O-ring seal is somewhat compliant and thus the pressure generated at the interface between 

it and the test specimen is of interest.  Because the relatively compliant seal is compressed into 

the groove via the test specimen, it nominally assumes orthogonal faces as shown in Figure 

A.A.8 and is constrained from movement.  This is a somewhat tenuous assumption, because with 

sufficient pressures the O-ring seal will be extruded out of the groove.  The resulting boundary 

conditions are 

0==
=

zy

x P

εε
σ

 .    AC.1 

From Hooke’s law we have 

( )( )zxyy E
σσνσε +−= 1

   AC.2 

( )( )yxzz E
σσνσε +−= 1

   AC.3 

The strains are zero in equations AC.2 and AC.3, and they can be equated and solved to show 

that the y and z stresses are equivalent.  Setting AC.2 to zero and substituting σz for σy and the 

pressure for σx results in 

Pz 






−
=

ν
νσ

1
.    AC.4 

Because Poisson’s ratio for most elastomer materials is ~0.5, Equation AC.5 implies that the 

pressure on all faces of the seal are equivalent to the hydraulic pressure within the chamber. 

 

 

 

 

 

 

 

 

 



 

NASA/TM—2002-210519 173 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z

X

Disk Test Specimen

Reaction Ring

O-Ring

 

 

 

 

 

Figure A.A.8: Cross-sectional view of the test specimen, reaction ring, O-ring 
and groove. 
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APPENDIX B: CODE FOR CALCULATION OF STRESSES AND STRAINS IN 

ANISOTROPIC CIRCULAR PLATES SUBJECTED TO UNIFORM PRESSURE 

The series constants for Okubu’s solution (Okubu, 1949) and the stresses and strains at any 

point in the disk test specimen were determined by a program written in the Maple V 

programming language10.  The Maple V code, which is listed below, has two main parts: that 

solving a selected number of equations for the corresponding constants and that determining the 

stresses and strains at a specified Cartesian location.  As the crystal symmetry is orthogonal, the 

elastic constants and solutions are in Cartesian form.  However, as the plate is circular, stress 

and strain in polar coordinates are more informative and output is given in both Cartesian and 

polar systems. 

 

The plates is assumed to be of cubic symmetry, {100} orientation and subjected to a uniform 

pressure with support on the periphery.  Any plate radius, thickness and pressure can be 

specified, however, the solution assumes that the plate is thin and the displacements small.  The 

code can be generalized to plate of orthotropic symmetry such as a plate of {110} orientation.  

 

# Okubu’s Solution Generalized for the Case of a {001} Plate of Variable Radius 

 

# Determination of Constants 

 

# Displacement Equations and Curvatures  

 

> restart: with (linalg): 
 
> n[t]:=4; 
  
> wc:=C1*x^4+C2*x^2*y^2+C3*y^4+C4*x^2+C5*y^2+C6; 
  
>w:=wc+cp^2/4*sum(A[n]*(cosh((2*n+2)*ap)*cos((2*n+2)*bp)/((2*n+2)*(2*n+1))-
(1/(2*n*(2*n+1))+1/(2*n*(2*n-1)))*cosh(2*n*ap)*cos(2*n*bp)+cosh((2*n-2)*ap)*cos((2*n-
2)*bp)/((2*n-1)*(2*n-
2))),n=2..n[t])+cpp^2/4*sum(B[n]*(cosh((2*n+2)*app)*cos((2*n+2)*bpp)/((2*n+2)*(2*n+1))-
(1/(2*n*(2*n+1))+1/(2*n*(2*n-1)))*cosh(2*n*app)*cos(2*n*bpp) +cosh((2*n-2)*app)*cos((2*n-
2)*bpp)/((2*n-1)*(2*n-2))),n=2..n[t]): 
  
> dwdxx:=sum((A[n]*cosh(2*n*ap)+B[n]*cosh(2*n*app))*cos(2*n*b),n=2..n[t])+diff(wc,x$2); 

                                                           
10 Maple V, release 5, Waterloo Maple Software, Ontario, Canada. 
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>dwdyy:=-
sum((A[n]*k1^2*cosh(2*n*ap)+B[n]*k2^2*cosh(2*n*app))*cos(2*n*b),n=2..n[t])+diff(wc,y$2); 
  
> dwdxdy:=-sum((A[n]*k1*sinh(2*n*ap)+B[n]*k2*sinh(2*n*app))*sin(2*n*b),n=2..n[t])+diff(wc,y,x); 
 
> a:=ln(rp);x:=exp(a)*cos(b);y:=exp(a)*sin(b);bp:=b;bpp:=b; 
 
> w:=combine(w,trig): 
 
# Equation 11 Of Okubu: 

  
> EQ11a:=collect(simplify(w-sum('coeff(w,cos(2*n*b))*cos(2*n*b)','n'=1..n[t]+1)=0),rp); 
> EQ11b:=simplify(coeff(w,cos(2*b))=0); 
> EQ11c:=simplify(coeff(w,cos(4*b))=0); 
> EQ11d:=simplify(coeff(w,cos(6*b))=0); 
> EQ11e:=simplify(coeff(w,cos(8*b))=0); 
  
# Moment Equation and Equation 12 of Okubu: 
 
>Ma:=combine((D1+D2+(D1-D2)*cos(2*b))*dwdxx+(D2+D3+(D2-
D3)*cos(2*b))*dwdyy+2*D4*dwdxdy*sin(2*b),trig): 
 
> EQ12a:=collect(simplify(Ma-sum('coeff(Ma,cos(2*n*b))*cos(2*n*b)','n'=1..n[t]+1)=0),rp); 
 
EQ12b:=simplify(coeff(Ma,cos(2*b))=0):EQ12b:=collect(EQ12b,A[2]):EQ12b:=collect(EQ12b,B[2])
EQ12b:=collect(EQ12b,rp); 
 
EQ12c:=simplify(coeff(Ma,cos(4*b))=0):EQ12c:=collect(EQ12c,A[2]):EQ12c:=collect(EQ12c,B[2]):
EQ12c:=collect(EQ12c,rp); 
EQ12d:=simplify(coeff(Ma,cos(6*b))=0): 
 
# Single Crystal Elastic Constants( m^2/MN): 
 
> S11:=1.0428e-5; 
> S22:=1.0428e-5; 
> S12:=-0.421e-5; 
> S44:=0.892e-5; 
> b11:=S22/(S11*S22-S12^2); 
> b22:=S11/(S11*S22-S12^2); 
> b12:=-S12/(S11*S22-S12^2); 
> b66:=1/S44; 
  
# Plate thickness (mm), Radius (mm) and applied pressure (psig): 
 
> rp:=11.568;q:=1056*6.8947/1000;h:=1.554; 
  
# Plate stiffness in Okubu's Notation: 
 
> D1:=h^3*S22/(12*(S11*S22-S12^2)); 
> D2:=-h^3*S12/(12*(S11*S22-S12^2)); 
> D3:=h^3*S11/(12*(S11*S22-S12^2)); 
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> D4:=h^3/(6*S44); 
  
# DEQ Constants: 
 
> k1:=D1^0.5/(D2+D4+((D2+D4)^2-D1*D3)^0.5)^0.5; 
> k2:=D1^0.5/(D2+D4-((D2+D4)^2-D1*D3)^0.5)^0.5; 
> cp:=rp*(1-k1^2)^0.5; 
> cpp:=rp*(1-k2^2)^0.5; 
> ap:=arccosh(rp/cp); 
> app:=arccosh(rp/cpp); 
  
# Series Constants Set to Zero: 
 
> n:='n';A[4]:=0:A[5]:=0:A[6]:=0:B[4]:=0:B[5]:=0:B[6]:=0: 
  
# Differential Equation of Bending: 
 
> EQ10:=3*D1*C1+(D2+D4)*C2+3*D3*C3-q/8; 
  
#  An, Bn and Ci Terms to be Determined from Boundary Equations; 
 
> consts:= 
solve({EQ10,EQ11a,EQ11b,EQ11c,EQ12a,EQ12b,EQ12c,EQ11d,EQ11e,EQ12d},{C1,C2,C3,C4,
C5,C6,A[2],B[2],A[3],B[3]}); 
 
# STRAINS AND STRESSES FOR A SPECIFIC PLATE LOCATION: 
 
# Cartesian Location of Interest (mm): 
 
> x:=0.0066; 
> y:=0.0067; 
> t:=arctan(y/x); 
 
# Calculation of Alpha and Beta Prime and Double Prime terms: 
 
> k:=k1;c:=cp; 
> a:=x^2+k^2*y^2-c^2; 
> b:=2*k*y*c; 
> d:=x^2+k^2*y^2-c^2; 
> alp:=evalf(log(1/(c*2^0.5)*(a+(a^2+b^2)^0.5)^0.5+(1/(2*c^2)*(a+(a^2+b^2)^0.5)+1)^0.5)); 
> betp:=(arcsin(1/(c*(2^0.5))*(-d+(d^2+b^2)^0.5)^0.5)); 
> k:=k2;c:=cpp; 
> a:=evalf(x^2+k^2*y^2-c^2); 
> b:=2*k*y*c; 
> d:=x^2+k^2*y^2-c^2; 
> alpp:=evalf(log(1/(c*2^0.5)*(a+(a^2+b^2)^0.5)^0.5-(1/(2*c^2)*(a+(a^2+b^2)^0.5)+1)^0.5)); 
> betpp:=(arcsin(1/(c*(2^0.5))*(-d+(d^2+b^2)^0.5)^0.5)); 
  
# Maximum Value of Prime Terms 
 
>alpMAX:=log((cos(Pi/4)*(-cp^2+(cp^4)^0.5)^0.5)/cp+(1+(-cp^2+(cp^4)^0.5)/(2*cp^2))^0.5); 
>betpMAX:=arcsin((cos(Pi/4)*(cp^2+(cp^4)^0.5)^0.5)/cp); 
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>alppMAX:=log((cos(Pi/4)*(-cpp^2+(cpp^4)^0.5)^0.5)/cpp-(1+(- 
cpp^2+(cpp^4)^0.5)/(2*cpp^2))^0.5); 
>betppMAX:=arcsin((cos(Pi/4)*(cpp^2+(cpp^4)^0.5)^0.5)/cpp); 
 
# Cartesian MicroStrains: 
 
>e11:=Re(-
h/2*(A[2]*cosh(4*alp)*cos(4*betp)+A[3]*cosh(6*alp)*cos(6*betp)+B[3]*cosh(6*Re(alpp))*cos(6*Im(
alpp))*cos(6*betpp)+B[2]*cosh(4*Re(alpp))*cos(4*Im(alpp))*cos(4*betpp)+12*C1*x^2+2*C2*y^2+
2*C4)); 
 
>e22:=Re(-h/2*(-k1^2*A[2]*cosh(4*alp)*cos(4*betp)-k1^2*A[3]*cosh(6*alp)*cos(6*betp)-
k2^2*B[2]*cosh(4*Re(alpp))*cos(4*Im(alpp))*cos(4*betpp)-
k2^2*B[3]*cosh(6*Re(alpp))*cos(6*Im(alpp))*cos(6*betpp)+2*C2*x^2+12*C3*y^2+2*C5)); 
 
>e12:=Re(-h*(-k1*A[2]*sinh(4*alp)*sin(4*betp)-k1*A[3]*sinh(6*alp)*sin(6*betp)-
k2*B[2]*sinh(4*Re(alpp))*cos(4*Im(alpp))*sin(4*betpp)-
k2*B[3]*sinh(6*Re(alpp))*cos(6*Im(alpp))*sin(6*betpp)+4*C2*x*y)); 
 
e11:=evalf(Re(subs(consts,e11)));e22:=evalf(Re(subs(consts,e22)));e12:=evalf(Re(subs(consts,e
12))); 
 
> eMAX:=Re(-
h/2*(A[2]*cosh(4*alpMAX)*cos(4*betpMAX)+B[2]*cosh(4*Re(alppMAX))*cos(4*Im(alppMAX))*cos
(4*betppMAX)+2*C4)); 
 
> eMAX:=evalf(Re(subs(consts,eMAX))); 
 
 
# Cartesian Stresses (MPa): 
 
> Sig11:=evalf(b11*e11+b12*e22); 
> Sig22:=evalf(b12*e11+b22*e22); 
> Sig12:=evalf(b66*e12); 
> SigMax:=b11*eMAX+b12*eMAX; 
 
# Polar MicroStrains and Stresses (MPa): 
 
> Sigrr:=Sig11*cos(t)^2+Sig22*sin(t)^2+Sig12*sin(2*t); 
> err:=e11*cos(t)^2+e22*sin(t)^2+e12*sin(2*t); 
> err:=e11*cos(t)^2+e22*sin(t)^2+e12*sin(2*t); 
> ett:=e22*cos(t)^2+e11*sin(t)^2-e12*sin(2*t); 
> ert:=(e22-e11)*sin(t)*cos(t)+e12*cos(2*t); 
> tt:=evalf(t*180/Pi); 
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The following tables give detailed uniaxial test specimen dimensions, failure loads and the 

calculated strengths based on ASTM C1161 (ASTM C 1161 1990). 

 

 

 

Table A.C.1 – <100> three-point flexure test specimen dimensions and failure loads. 

 

Average Average Effective
Billet Specimen Width 1 Width 2 Width 3 Height 1 Height 2 Height 3 Width  Height Load Strength Area

Number Number mm mm mm mm mm mm mm mm N MPa mm2
x x

2461 3fx2 3.862 3.858 3.816 2.797 2.775 2.723 3.845 2.765 1005 1016 21

2429 3fx1t 3.824 3.836 3.821 2.747 2.745 2.721 3.827 2.738 770 1622 21
<100> 3fx2t 3.746 3.777 3.763 2.761 2.771 2.763 3.762 2.765 608 1277 21

3fx3b 3.798 3.811 3.804 2.767 2.76 2.736 3.804 2.754 827 1732 21

2454 3fx1t 3.864 3.876 3.866 2.876 2.851 2.807 3.869 2.845 601 1162 21
<100> 3fx2b 3.865 3.837 3.788 2.829 2.84 2.835 3.830 2.835 623 1224 21

3fx3b 3.83 3.853 3.861 2.845 2.867 2.842 3.848 2.851 760 1469 21

2464 3fx1 3.854 3.832 3.799 2.791 2.798 2.799 3.828 2.796 578 1168 21
<100> 3fx2 3.817 3.827 3.829 2.801 2.835 2.84 3.824 2.825 623.6 1235 21

21
2471 3fx1t 3.745 3.829 3.852 2.808 2.874 2.883 3.809 2.855 694.9 1353 21

2474 3fx1t 3.848 3.849 3.839 2.825 2.842 2.845 3.845 2.837 498.9 975 21
<100> 3fx2b 3.796 3.799 3.788 2.799 2.828 2.836 3.794 2.821 568.3 1139 21

3fx3b 3.81 3.844 3.878 2.818 2.818 2.795 3.844 2.810 633.8 1262 21

2439 3fx1t 3.776 2.755 543.7 1148 21
<100> 3fx2b 3.729 3.754 3.786 2.815 2.834 2.832 3.756 2.827 560.2 1129 21
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Average Average Effective
Billet # Specimen Width 1 Width 2 Width 3 Height 1 Height 2 Height 3 Width Height Load Strength Area

Number Number mm mm mm mm mm mm mm mm N MPa mm2
x x

2461 4fx1 3.922 3.922 3.907 2.901 2.914 2.915 3.917 2.910 860 771 101
<001> 4fx2 3.937 3.94 3.93 2.908 2.902 2.873 3.936 2.894 776 700 102

4fx3 3.926 3.892 3.835 2.936 2.921 2.889 3.884 2.915 1203 1082 100
4fx4 3.855 3.854 3.824 2.894 2.935 2.952 3.844 2.927 1117 1008 100
3fx2 3.862 3.858 3.816 2.797 2.775 2.723 3.845 2.765 1005 1016 99

2429 4fx3b 3.636 3.699 3.735 2.713 2.726 2.7 3.690 2.713 1273 1392 95
<001> 4fx1t 3.771 3.779 3.766 2.708 2.769 2.766 3.772 2.748 1207 1259 97

4fx2t 3.727 3.735 3.704 2.71 2.758 2.737 3.722 2.735 1306 1393 95
4fx4b 3.704 3.748 3.747 2.698 2.722 2.686 3.733 2.702 998 1088 95

2353 4fx1t 3.569 3.593 3.567 2.74 2.75 2.738 3.576 2.743 784 880 92
<100> 4fx2t 3.788 3.75 3.722 2.839 2.842 2.836 3.753 2.839 1032 1030 96

4fx3b 3.991 4.049 4.09 2.747 2.776 2.787 4.043 2.770 903 879 103
4fx4b 3.493 3.465 3.412 2.636 2.59 2.53 3.457 2.585 702 919 89

2454 4fx1t 3.879 3.883 3.876 2.85 2.859 2.846 3.879 2.852 926.7 887 99
<100> 4fx2t 3.814 3.836 3.836 2.681 2.689 2.649 3.829 2.673 761 841 98

4fx3b 3.805 3.834 3.851 2.826 2.837 2.824 3.830 2.829 852.5 840 98
4fx4b 3.818 3.833 3.838 2.819 2.825 2.812 3.830 2.819 1057 1049 98

2464 4fx1 3.786 3.792 3.799 2.81 2.812 2.802 3.792 2.808 893 902 97
<100> 4fx2 3.815 3.834 3.85 2.811 2.819 2.797 3.833 2.809 764 764 98

4fx3 3.738 3.742 3.724 2.827 2.827 2.804 3.735 2.819 941 958 96
4fx4 3.859 3.848 3.83 2.801 2.829 2.847 3.846 2.826 1189 1169 99

2471 4fx1t 3.882 3.86 3.85 2.858 2.862 2.873 3.864 2.864 1378 1312 99
<100> 4fx2t 3.944 3.939 3.915 3.023 2.996 2.982 3.933 3.000 1503 1281 101

4fx4b 3.7 3.758 3.807 2.834 2.858 2.860 3.755 2.851 1103 1091 97

2474 4fx1t 3.81 3.826 3.819 2.855 2.854 2.822 3.818 2.844 1390 1359 98
<100> 4fx2t 3.873 3.87 3.84 2.816 2.849 2.874 3.861 2.846 933.8 902 99

4fx3b 3.749 3.77 3.794 2.788 2.815 2.836 3.771 2.813 1171 1185 97
4fx4b 3.811 3.794 3.762 2.707 2.766 2.756 3.789 2.743 725 769 97

2439 4fx1t 3.85 3.855 3.833 2.864 2.855 2.832 3.846 2.850 883 854 99
<100> 4fx2t 3.755 3.766 3.784 2.755 2.791 2.803 3.768 2.783 780.8 808 97

4fx3b 3.789 3.794 3.775 2.736 2.736 2.728 3.786 2.733 944.5 1008 97
4fx4b 3.857 3.869 3.877 2.802 2.825 2.822 3.868 2.816 962.4 947 99

 

 

  

 

 

 

 

 

 

 

 

Table A.C.2 – <100> four-point flexure test specimen dimensions and failure loads. 
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Average Average Failure Effective
Billet Specimen Width 1 Width 2 Width 3 Height 1 Height 2 Height 3  Width Height Load Strength Area Failure

Number Number mm mm mm mm mm mm mm mm N MPa mm2 Source
x x

2492 3fx1 3.734 3.725 3.706 2.742 2.756 2.753 3.722 2.750 338 727 20 HfC
<110> 3fx2 3.627 3.643 3.663 2.701 2.695 2.667 3.644 2.688 317 731 20 HfC

2490 3fx1 3.789 3.803 3.811 2.795 2.788 2.772 3.801 2.785 427 877 21 HfC
<110> 3fx2 3.748 3.779 3.776 2.751 2.762 2.753 3.768 2.755 499 1057 21 HfC

2496 3fx2 3.802 3.801 3.774 2.804 2.811 2.81 3.792 2.808 251.2 21 EDM
<110> 3fx3 3.873 3.866 3.858 2.767 2.715 2.752 3.706 2.745 356.1 773 20 HfC

2518 3fx1 3.783 3.784 3.771 2.808 2.803 2.775 3.779 2.795 237.4 21 EDM
<110> 3fx2 3.737 3.754 3.803 2.788 2.819 2.837 3.765 2.815 236.6 482 21 HfC

2519 3fx1 3.709 3.709 3.709 2.78 2.771 2.741 3.709 2.764 434.7 929 20 HfC
<110> 3fx3 3.714 3.754 3.766 2.792 2.754 2.707 3.745 2.751 361.3 773 20 HfC

2493 3fx1 3.74 3.695 3.65 2.808 2.78 2.735 3.695 2.774 178 20 EDM
<110> 3fx2 3.638 3.676 3.684 2.75 2.753 2.752 3.666 2.752 254.4 557 20 HfC  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A.C.3 – <110> three-point flexure test specimen dimensions and failure loads. 
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Average Average Failure Effective
Billet Specimen Width 1 Width 2 Width 3 Height 1 Height 2 Height 3 Width Height Load Strength Area Failure

Number Number mm mm mm mm mm mm mm mm N MPa mm2 Source
x x

2492 4fx1 3.868 3.872 3.874 2.849 2.855 2.841 3.871 2.848 391.8 372 105 EDM
<110> 4fx2 3.891 3.886 3.881 2.891 2.9 2.88 3.886 2.890 310.1 285 105 EDM

4fx3 3.732 3.751 3.742 2.839 2.826 2.804 3.742 2.823 519.5 527 101 HfC
4fx4 3.742 3.761 3.768 2.775 2.77 2.735 3.757 2.760 418.6 443 101 EDM

2486 4fx2 3.873 3.884 3.886 2.802 2.819 2.836 3.881 2.819 351.3 345 105 EDM
<110> 4fx4 3.861 3.852 3.804 2.746 2.76 2.752 3.839 2.753 420.3 438 103 HfC

2490 extra 3.834 3.775 3.803 2.705 2.701 2.661 3.804 2.689 464.6 511 102 HfC
<110> 4fx4 3.839 3.847 3.819 2.783 2.809 2.813 3.835 2.802 406.7 409 103 EDM

4fx1 3.824 3.836 3.843 2.801 2.812 2.795 3.834 2.803 729.1 732 103 HfC
4fx2 3.734 3.735 3.725 2.708 2.704 2.682 3.731 2.698 639.3 712 101 HfC
CN1 3.712 3.746 3.74 2.777 2.775 2.766 3.733 2.773 191.7 204 101 EDM

2496 4fx2 3.776 3.811 3.839 2.907 2.909 2.887 3.809 2.901 334.5 316 103 EDM
<110> 4fx3 3.833 3.842 3.831 2.831 2.866 2.881 3.835 2.859 365.9 354 104 EDM

4fx4 3.853 3.859 3.857 2.878 2.884 2.883 3.856 2.882 420.9 398 104 EDM

2518 4fx1 3.757 3.778 3.795 2.816 2.823 2.807 3.777 2.815 336.0 340 102 EDM
<110> 4fx2 3.825 3.831 3.842 2.736 2.721 2.709 3.833 2.722 322.8 345 103 EDM

4fx3 3.705 3.694 3.645 2.77 2.732 2.677 3.681 2.726 339.7 376 100 EDM
4fx4 3.695 3.712 3.728 2.818 2.822 2.815 3.712 2.818 415.9 427 101 HfC

2506 4fx1 3.647 3.647 3.599 2.733 2.781 2.814 3.631 2.776 404.4 438 99 EDM
<110> 4fx4 3.76 3.745 3.741 2.856 2.831 2.782 3.749 2.823 358.1 363 102 EDM

4fx2 3.635 3.636 3.643 2.66 2.71 2.737 3.638 2.702 426.9 487 98 EDM
4fx3 3.656 3.644 3.576 2.821 2.808 2.766 3.625 2.798 567.9 605 98 HfC

2516 4fx1 3.791 3.734 3.654 2.759 2.712 2.674 3.726 2.715 404.9 447 101 EDM
<110> 4fx2 3.67 3.646 3.612 2.72 2.752 2.776 3.643 2.749 404.6 445 99 HfC

4fx3 3.803 3.779 3.737 2.821 2.836 2.847 3.773 2.835 373.4 373 102 EDM
4fx4 3.746 3.724 3.714 2.787 2.763 2.746 3.728 2.765 295.9 315 101 EDM

2519 4fx1 3.667 3.685 3.704 2.787 2.711 2.62 3.685 2.706 634.9 711 100 HfC
<110> 4fx3 3.626 3.627 3.622 2.728 2.687 2.63 3.625 2.682 665.6 772 98 HfC

4fx4 3.586 3.617 3.619 2.651 2.694 2.726 3.607 2.690 667.8 773 98 HfC
4fx2 3.68 3.711 3.72 2.742 2.746 2.741 3.704 2.743 745.0 808 100 HfC

2484 4fx3 3.747 3.763 3.777 2.784 2.776 2.744 3.762 2.768 637.4 669 102 HfC
<110> 4fx4 3.684 3.687 3.695 2.758 2.746 2.731 3.689 2.745 630.7 686 100 HfC

2493 4fx1 3.832 3.821 3.801 2.809 2.833 2.847 3.818 2.830 632.4 625 103 HfC
<110> 4fx2 3.787 3.785 3.786 2.797 2.831 2.847 3.786 2.825 184.5 186 102 EDM

4fx3 3.797 3.803 3.796 2.852 2.836 2.794 3.799 2.827 267.5 268 103 EDM

 

 

 

Table A.C.4 – <110> four-point flexure test specimen dimensions and failure loads. 
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Test Thickness Thickness Thickness Thickness Thickness Average Diameter Diameter Disk Support Applied
Specimen 1 2 3 4 Center Thickness 1 2 Average Radius Pressure

ID Diameter
mm mm mm mm mm mm mm mm mm mm MPa

B4 1.541 1.558 1.546 1.555 1.548 1.550 25.318 25.318 11.568 4.92
B5 1.548 1.552 1.544 1.547 1.544 1.547 25.303 25.308 25.306 11.568 8.40
B6 1.499 1.476 1.455 1.514 1.486 1.486 25.307 25.301 25.304 11.568 4.13
B7 1.555 1.549 1.563 1.552 1.549 1.554 25.292 25.292 25.292 11.568 7.28
B8 1.539 1.547 1.549 1.552 1.542 1.546 25.278 25.290 25.284 11.685 7.31
B9 1.549 1.544 1.539 1.552 1.539 1.545 24.303 25.288 24.796 11.777 7.29
B10 1.529 1.542 1.542 1.544 1.534 1.538 25.296 25.293 25.295 11.568 9.33
B11 1.544 1.539 1.534 1.542 1.539 1.540 25.277 25.266 25.272 11.568 6.59
B12 1.265 1.273 1.270 1.268 1.265 1.268 25.077 25.008 25.043 11.568 4.83
B13 1.499 1.511 1.488 1.529 1.509 1.507 25.304 25.328 25.316 11.568 5.32
B14 1.448 1.435 1.443 1.430 1.448 1.441 25.243 25.211 25.227 11.568 3.65
e3 1.440 1.448 1.453 1.435 1.445 1.444 25.222 25.228 25.225 11.568 7.00
e4 1.438 1.425 1.422 1.440 1.430 1.431 25.207 25.210 25.209 11.568 6.03

Average 1.492 25.222 11.593
Standard Deviation 0.081 0.148 0.064

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX D: BIAXIAL TEST SPECIMEN DATA 

The following tables give detailed biaxial test specimen dimensions, failure pressures and the 

calculated strengths based on Okubu’s (Okubu 1949) approximate and series solutions. 

 

 

 

Table A.D.1 – Biaxial disk test specimen dimensions and failure pressures. 
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roximate Series
Specimen w micro Solution Solution Solution Solution

ID D* C* Strain Stress Stress Stress Stress
mm MPa MPa MPa MPa

B4 47611 5.30 0.154 2113 339.7 311.8 343.4 315.5
B5 47372 5.30 0.263 3618 581.8 534.3 588.1 540.6
B6* 41976 5.30 0.146 1929 310.3 284.9 313.4 288.0
B7 47981 5.30 0.225 3107 499.8 458.6 505.2 464.1
B8* 47266 5.30 0.239 3214 517.0 474.7 522.4 480.2
B9* 47170 5.30 0.247 3264 524.8 481.8 530.3 487.3

B10* 46572 5.30 0.297 4061 653.1 601.3 660.1 608.3
B11* 46708 5.30 0.209 2862 460.3 422.6 465.2 427.5
B12* 26084 5.30 0.275 3095 497.8 457.1 501.4 460.7
B13* 43813 5.30 0.180 2412 387.9 356.4 391.9 360.4
B14* 38261 5.30 0.142 1811 291.2 267.2 294.0 269.9
e3* 38547 5.30 0.269 3456 555.8 510.6 561.0 515.8
e4* 37496 5.30 0.239 3033 487.8 447.8 492.3 452.3

Average 470 431 477 439
Standard Deviation 109 100 111 102
90% Confidence Interval 54 49 55 50

 
 

Table A.D.2 – Biaxial disk test specimen dimensions and failure pressures. 

 

pproximate Series App

 

Lateral Correction:
Test Displacement Maximum A
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11 Mathematica 3.0, Wolfram Research, Champaign, Illinois. 

 
 
(* INPUT WEIBULL MODULUS *) 
(* INPUT <100> AND <110> 4-POINT FLEXURE EFFECTIVE AREAS (mm):*) 
 
m=5.5 
Ae100=97.6 
Ae110=94 
 

                                                          

NORMAL STRESS CRITERION.

APPENDIX E: CODE FOR ESTIMATION OF THE SCALE PARAMETER OF 

ANISOTROPIC MATERIALS 

In order to estimate the characteristic strength of disk test specimens exhibiting elastic and 

strength anisotropy, the scale parameter function must be estimated from uniaxial test data. The 

following program, which is written in the Mathematica programming language11, estimates the 

constant for the scale parameter function given in Equation (98).  The normal stress criterion is 

used.   

 
 

ESTIMATION OF SCALE PARAMETER CONSTANTS FOR NiAl SINGLE CRYSTAL: 

(* DEFINE SCALE PARAMETER SHAPE FUNCTIONS AND CONSTANTS TO BE SOLVED  
(Equations 128 and 129) *) 
 
scaleparameter100=(AA*Cos[2*t]^2+BB*Sin[2*t]^2) 
 
scaleparameter110=(AA*Cos[2*(t+Pi/4)]^2+BB*Sin[2*(t+Pi/4)]^2) 
 
(* CHARACTERISTIC STRENGTH INTEGRATIONS RELATING SCALE PARAMETER FUNCTION 
TO MEASURED CHARACTERISTIC STRENGTH BY AREA INTEGRATION ( Equations 130 and 
131).  INPUT CHARACTERISTIC STRENGTHS ARE NORMALIZED TO THAT OF THE <100> FOR 
COMPUTATIONAL EFFICIENCY. *) 
 
EQ100=2*NIntegrate[Ae100/Pi*(Cos[t]^2/scaleparameter100)^m,{t,0,Pi/2}] 
 
EQ110=2*NIntegrate[Ae110/Pi*(0.6298*Cos[t]^2/scaleparameter110)^m,{t,0,Pi/2}] 
 
FindRoot[Print[InputForm[{AA,BB,EQ100,EQ110}]];{1.0==EQ100,1.0==EQ110},{ 
    AA,{3.4,3.8}},{BB,{0.7,1}},MaxIterations->150] 
 
`DigitsOfAccuracy==Accuracy[%] 
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APPENDIX F: CODE FOR ESTIMATION OF THE CHARACTERISTIC 

STRENGTH OF ISOTROPIC DISK TEST SPECIMENS 

The characteristic strength of isotropic disk test specimens (e.g. tungsten carbide) can be 

determined from uniaxial test data and the following program, which is written in the 

Mathematica Programming Language12.  The Mathematica code has two main parts: that 

solving for the scale parameters associated with various failure criteria and that determining the 

characteristic strength of the disk test specimens. 

 

The material is assumed to be isotropic.  The disk test specimen is assumed to be subjected to a 

uniform pressure within a circular support of diameter less than or equal to that of the disk 

periphery.  Any plate radius, thickness and pressure can be specified, however, the solution 

assumes that the plate is thin and the displacements small.   The code was used to calculate the 

characteristic strengths of the tungsten carbide specimens and the NiAl specimens with the 

assumptions of elastic and strength isotropy.    

 

ESTIMATION OF THE CHARACTERISTIC STRENGTH OF ISOTROPIC DISK TEST 

SPECIMENS  

 
 
(* INPUT <110> 4-POINT FLEXURE DATA (MPa):*) 
 
m=5.5; 
CS=689; 
 
(* MEAN EFFECTIVE AREA OF THE TESTED BEAMS (mm):*) 
 
AePIA = 94; 
 
(* STRESS INTENSITY FACTOR COEFFICIENTS:*) 
 
Y1=1.365; 
Y2= 1.241; 
 
(* TRIGONOMETRIC FUNCTION FOR UNIT CIRCLE INTEGRATION:*) 
 

 
(* ESTIMATION OF SCALE PARAMETER *)

 
12 Mathematica 3.0, Wolfram Research, Champaign, Illinois. 
 

                                                                                                                                                                            



 

 fthetaPIA=1; 
fthetanormal=Cos[t]^2;  
fthetacoplanar=(Cos[t]^4+0.25*Y2^2/Y1^2*Sin[2*t]^2)^0.5; 
fthetaNoncop=( 
      Cos[t]^8+1.5*Y2^2/Y1^2*Cos[t]^4*Sin[2*t]^2+ 
        Y2^4/Y1^4/16*Sin[2*t]^4)^0.25; 
fthetaHoop= 
  8^(-0.5)*Y2^3* 
    Sin[2*t]^3*( 
        2*Cos[t]^2+6*(Cos[t]^4+2*Sin[2*t]^2*Y2^2/Y1^2)^0.5)/( 
          Y1^2*Cos[t]^4+3*Y2^2*Sin[2*t]^2- 
            Y1*Cos[t]^2*(Y1^2*Cos[t]^4+2*Y2^2*Sin[2*t]^2)^0.5)^1.5; 
 
(* ESTIMATION OF SCALE PARAMETER *) 
 
SPpia=CS*(NIntegrate[AePIA/Pi*(fthetaPIA)^m,{t,0,Pi},Method->Trapezoidal])^( 
        1/m) 
SPnormal=CS*( 
        NIntegrate[AePIA/Pi*(fthetanormal)^m,{t,0,Pi},Method->Trapezoidal])^( 
        1/m) 
SPcoplanar= 
  CS*(NIntegrate[AePIA/Pi*(fthetacoplanar)^m,{t,0,Pi},Method->Trapezoidal])^( 
        1/m) 
SPnoncop=CS*( 
        NIntegrate[AePIA/Pi*(fthetaNoncop)^m,{t,0,Pi},Method->Trapezoidal])^( 
        1/m) 
SPhoop=CS*( 
        2*NIntegrate[AePIA/Pi*(fthetaHoop)^m,{t,0.0001,Pi/2}, 
            Method->Trapezoidal])^(1/m) 
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(* MEAN DISK DIMENSIONS (mm): *) 
 
Rs=11.592; 
Rd=25.229/2; 
v=0.31; 
h = 1.495; 
 
(* DISK STRESSES WITH LATERAL CORRECTION TERM OF TIMOSHENKO: *) 
(* TO IGNORE CORRECTION TERM, SET THICKNESS h TO 0: *) 
 
Sig1=(1-v)*Rs^2/Rd^2+2*(1+v)-(1+3*v)*r^2/Rs^2+2/3*h^2/Rs^2*(3+v)/(1-v); 
Sig2=(1-v)*Rs^2/Rd^2+2*(1+v)-(3+v)*r^2/Rs^2+2/3*h^2/Rs^2*(3+v)/(1-v); 
SigMax=(1-v)*Rs^2/Rd^2+2*(1+v)+2/3*h^2/Rs^2*(3+v)/(1-v); 
 
(* CALCULATION OF CHARACTERISTIC STRENGTH OF DISK (MPa): *) 
 
(* MAXIMUM PRINCIPAL STRESS: *) 
 

 
DigitsOfAccuracy=Accuracy[%] 
 
(* ESTIMATION OF CHARACTERISTIC STRENGTH OF DISK TEST SPECIMENS *)



 f1pia=1; 
f2pia=1; 
 
cspressdiskmaxprin= 
  SPpia*(2*NIntegrate[ 
            NIntegrate[r*((Sig1*f1pia/SigMax)^m),{t,0,Pi}],{r,0,Rs}])^(-1/m) 
 
 (* PIA: *) 
 
cspressdiskpia= 
  SPpia*(2*NIntegrate[ 
            r*Pi*((Sig1*f1pia/SigMax)^m+(Sig2*f2pia/SigMax)^m),{r,0,Rs}])^(-1/ 
          m) 
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(* NORMAL STRESS CRITERION: *) 
 
f1nor=Cos[t]^2; 
f2nor=Sin[t]^2; 
 
cspressdisknormal= 
  SPnormal*( 
        2*NIntegrate[ 
            NIntegrate[r*((Sig1*f1nor/SigMax+Sig2*f2nor/SigMax)^m),{t,0,Pi}],{ 
              r,0,Rs}])^(-1/m) 
   
(* COPLANAR ENERGY RELEASE RATE: *) 
 
f1nor=Cos[t]^2; 

 f2nor=Sin[t]^2; 
 
cspressdiskcoplanar= 
  SPcoplanar*( 
        2*NIntegrate[ 
            NIntegrate[ 
              r*((((Sig1*Cos[t]^2+Sig2*Sin[t]^2)^2+ 
                              Y2^2/Y1^2/4*(Sig1-Sig2)^2*Sin[2*t]^2)^0.5)/ 
                      SigMax)^m,{t,0,Pi}],{r,0,Rs}])^(-1/m) 
   
(* NONCOPLANAR ENERGY RELEASE RATE: *) 
 
SigN=Sig1*Cos[t]^2+Sig2*Sin[t]^2; 
SigS=(Sig1-Sig2)/2*Sin[2*t]; 
  
cspressdisknoncop= 
  SPnoncop*( 
        2*NIntegrate[ 
            NIntegrate[ 
              r*((SigN^4+6*Y2^2/Y1^2*SigN^2*SigS^2+Y2^4/Y1^4*SigS^4)^0.25/ 
                      SigMax)^m,{t,0,Pi}],{r,0,Rs}])^(-1/m) 
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(* HOOP STRESS FACTOR: *) 
 
cspressdisHoop= 
  SPhoop*(2* 
          NIntegrate[ 
            NIntegrate[ 
              2*r*((8^0.5*(2*SigN+6*(SigN^2+8*Y2^2/Y1^2*SigS^2)^0.5)*Y2^3* 
                          SigS^3/( 
                                Y1^2*SigN^2+12*Y2^2*SigS^2- 
                                  Y1*SigN*( 
                                        Y1^2*SigN^2+8*Y2^2*SigS^2)^0.5)^1.5)/ 
                      SigMax)^m,{t,0.005,0.99*Pi/2}],{r,0.05,Rs}])^(-1/m) 
  

 



 

 

The characteristic strength of disk test specimens exhibiting elastic anisotropy and strength 

isotropy can be determined from uniaxial test data and the following program, which is written in 

the Mathematica Programming Language13.  The Mathematica code has two main parts: that 

solving for the scale parameters associated with various failure criteria and that determining the 

characteristic strength of the disk test specimens. 

 

The disk test specimen is subjected to a uniform pressure within a circular support of diameter 

less than or equal to that of the disk periphery.  Any plate radius, thickness and pressure can be 

specified, however, the solution assumes that the plate is thin and the displacements small.   The 

code was used to calculate the characteristic strengths of the NiAl specimens with the 

assumptions of elastic anisotropy and strength isotropy (i.e. section 5.3.2).    

 
ESTIMATION OF THE CHARACTERISTIC STRENGTH OF DISK TEST SPECIMENS 

ASSUMING ELASTIC ANISOTROPY AND STRENGTH ISOTROPY  

 
 
(* ESTIMATION OF SCALE PARAMETER *) 
 
(* INPUT <110> 4-POINT FLEXURE DATA (MPa):*) 
 
m=5.5; 
CS=689; 
 
(* MEAN EFFECTIVE AREA OF THE TESTED BEAMS:*) 
 
AePIA = 94; 
 
(* STRESS INTENSITY FACTOR COEFFICIENTS:*) 
 
Y1=1.365; 
Y2=1.241; 
 
(* TRIGONOMETRIC FUNCTION FOR UNIT CIRCLE INTEGRATION:*) 
 
fthetaPIA=1; 
fthetanormal=Cos[t]^2;  
fthetacoplanar=(Cos[t]^4+0.25*Y2^2/Y1^2*Sin[2*t]^2)^0.5; 

                                                           
13 Mathematica 3.0, Wolfram Research, Champaign, Illinois. 
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APPENDIX G: CODE FOR ESTIMATION OF THE CHARACTERISTIC 

STRENGTH OF ELASTICALLY ANISOTROPIC DISK TEST SPECIMENS 



fthetaNoncop=( 
      Cos[t]^8+1.5*Y2^2/Y1^2*Cos[t]^4*Sin[2*t]^2+ 
        Y2^4/Y1^4/16*Sin[2*t]^4)^0.25; 
 
fthetaHoop= 
  8^(-0.5)*Y2^3* 
    Sin[2*t]^3*( 

 
 
(* DISK DIMENSIONS *) 
 
Rs=11.592; 
Rd=25.229/2; 
v=0.31; 
h = 1.495; 
 
(* DISK STRESSES FROM OKUBU’S APPROXIMATE SOLUTION*) 
 
S11=1.0428*10^-5; 
S22=1.0428*10^-5; 
 S12=-0.421*10^-5; 
 S44=0.892*10^-5; 
 b11=S22/(S11*S22-S12^2); 
 b22=S11/(S11*S22-S12^2); 
 b12=-S12/(S11*S22-S12^2); 
 b66=1/S44; 
(* Plate stiffness in Okubu's Notation: *) 
 D1=h^3*S22/(12*(S11*S22-S12^2)); 
 D2=h^3*(-S12)/(12*(S11*S22-S12^2)); 
 D3=h^3*S11/(12*(S11*S22-S12^2)); 
 D4=h^3/(6*S44); 
 DD=(3*D1+2*D2+2*D4+3*D3)/8; 

        2*Cos[t]^2+6*(Cos[t]^4+2*Sin[2*t]^2*Y2^2/Y1^2)^0.5)/( 
          Y1^2*Cos[t]^4+3*Y2^2*Sin[2*t]^2- 
            Y1*Cos[t]^2*(Y1^2*Cos[t]^4+2*Y2^2*Sin[2*t]^2)^0.5)^1.5; 
 
(* SCALE PARAMETER ESTIMATION *) 
 
SPpia=CS*(NIntegrate[AePIA/Pi*(fthetaPIA)^m,{t,0,Pi},Method->Trapezoidal])^( 
        1/m) 
SPnor=CS*( 
        NIntegrate[AePIA/Pi*(fthetanormal)^m,{t,0,Pi},Method->Trapezoidal])^( 
        1/m) 
SPcoplanar= 
  CS*(NIntegrate[AePIA/Pi*(fthetacoplanar)^m,{t,0,Pi},Method->Trapezoidal])^( 
        1/m) 
SPnoncop=CS*( 
        NIntegrate[AePIA/Pi*(fthetaNoncop)^m,{t,0,Pi},Method->Trapezoidal])^( 
        1/m) 
SPhoop=CS*( 
        2*NIntegrate[AePIA/Pi*(fthetaHoop)^m,{t,0.0001,Pi/2}, 
            Method->Trapezoidal])^(1/m) 
 
(* ESTIMATION OF CHARACTERISTIC STRENGTH OF DISK TEST SPECIMENS *)
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 k=(7*D1+10*D2+6*D4+7*D3)/(2*(D1+2*D2+D3)); 
 x=(r^2/(1+Tan[t]^2))^0.5; 
 y=x*Tan[t]; 
 a=Rs; 
(* Cartesian Strains: *) 
 e11=h/2*(2*a^2*(k+1)-12*x^2-4*y^2)/(64*DD); 
 e22=h/2*(2*a^2*(k+1)-12*y^2-4*x^2)/(64*DD); 

 

 e6=-h*x*y/(8*DD); 
(* Cartesian Stress: *) 
 Sig11=b11*e11+b12*e22; 
 Sig22=b12*e11+b22*e22; 
 Sig12=b66*e6; 
(* Principal Stress: *)  
Sig2=Sig11*Cos[t]^2+Sig22*Sin[t]^2+Sig12*Sin[2*t]; 
 Sig1=Sig22*Cos[t]^2+Sig11*Sin[t]^2-Sig12*Sin[2*t]; 
Shear= (Sig22-Sig11)*Sin[t]*Cos[t]+Sig12*Cos[2*t] 
SigMax=h*a^2*(k+1)/(64*DD)*(b11+b12); 
(* Normal and Shear Stresses: *) 
SigN=Sig1*Cos[t1]^2+Sig2*Sin[t1]^2; 
SigS=(Sig1-Sig2)/2*Sin[2*t1]; 
 
(* CALCULATION OF CHARACTERISTIC STRENGTH OF DISK (MPa): *) 
 
(* MAXIMUM PRINCIPAL STRESS: *) 
 
f1pia=1; 
f2pia=1; 
 
cspressdiskMP=( 
            NIntegrate[ 
              NIntegrate[r*((Sig1*f1pia/(SPpia*SigMax))^m),{r,0,Rs}],{t,0, 
                2*Pi}])^(-1/m) 
 
cspressdiskpia=( 
              NIntegrate[ 
                NIntegrate[ 
                  r*((Sig1*f1pia/(SPpia*SigMax))^ 
                          m+(Sig2*f2pia/(SPpia*SigMax))^m),{r,0,Rs}],{t,0, 
                  2*Pi}])^(-1/m) 
 
(* NORMAL STRESS CRITERION: *) 
 
f1nor=Cos[t1]^2; 
f2nor=Sin[t1]^2; 
 
cspressdisknormal=( 
        NIntegrate[ 
          8*NIntegrate[ 
              NIntegrate[ 
                r/Pi*((Sig1*f1nor+Sig2*f2nor)/(SPnor*SigMax))^m,{r,0,Rs}],{t, 
                0,Pi/4}],{t1,0,Pi}])^(-1/m) 
 
(*COPLANAR ENERGY RELEASE RATE: *) 
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 cspressdiskcoplanar=( 
            NIntegrate[ 
              8*NIntegrate[ 
                  NIntegrate[ 
                    r/Pi*((((Sig1*Cos[t1]^2+Sig2*Sin[t1]^2)^2+ 
                                    Y2^2/Y1^2/4*(Sig1-Sig2)^2* 
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                                       Sin[2*t1]^2)^0.5)/(SPcoplanar*SigMax))^ 
                        m,{r,0,Rs}],{t,0,Pi/4}],{t1,0,Pi}])^(-1/m) 
 
(* NONCOPLANAR ENERGY RELEASE RATE: *) 
 
cspressdisknoncop=( 
          NIntegrate[ 
            8*NIntegrate[ 
                NIntegrate[ 
                  r/Pi*(((SigN^4+6*Y2^2/Y1^2*SigN^2*SigS^2+ 
                                  Y2^4/Y1^4*SigS^4)^0.25)/(SPnoncop*SigMax))^ 
                      m,{r,0,Rs}],{t,0,Pi/4}],{t1,0,Pi}])^(-1/m)   
 
(* HOOP STRESS FACTOR: *) 
 
 cspressdiskHoop=( 
      NIntegrate[ 
        2*8*NIntegrate[ 
            NIntegrate[ 
              r/Pi*((8^0.5*(2*SigN+6*(SigN^2+8*Y2^2/Y1^2*SigS^2)^0.5)*Y2^3* 
                          SigS^3/( 
                                Y1^2*SigN^2+12*Y2^2*SigS^2- 
                                  Y1*SigN*( 
                                        Y1^2*SigN^2+8*Y2^2*SigS^2)^0.5)^1.5)/( 
                        SPhoop*SigMax))^m,{r,0.04,Rs}],{t,0,Pi/4}],{t1,0.005, 
          0.998*Pi/2}])^(-1/m) 
 
 
time = TimeUsed[]/60 
memor = MemoryInUse[] 



 

APPENDIX H: CODE FOR ESTIMATION OF THE CHARACTERISTIC 

STRENGTH OF ANISOTROPIC DISK TEST SPECIMENS 

The characteristic strength of disk test specimens exhibiting elastic and strength anisotropy can 

be determined from uniaxial test data and the following program, which is written in the 

Mathematica Programming Language14.  The Mathematica code has two main parts: that 

calculating stresses at any Cartesian location and that determining the characteristic strength of 

the disk test specimens.  The scale parameter constants as estimated from the code in Appendix 

E are used as input to this code. 

 

The disk test specimen is subjected to a uniform pressure within a circular support of diameter 

less than or equal to that of the disk periphery.  Any plate radius, thickness and pressure can be 

                                                           
14 Mathematica 3.0, Wolfram Research, Champaign, Illinois. 
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 (* WEIBULL MODULUS *) 
m=5.5 
 
(*STRESS INTENSITY FACTOR COEFFICIENTS:*) 
 
Y1=(Pi)^0.5 
Y2=(Pi)^0.5 
 
(* DISK DIMENSIONS *) 
 
Rs=11.592 
Rd=25.229/2 
v=0.31 
h = 1.495 
 
(* DISK STRESSES FROM OKUBU’S APPROXIMATE SOLUTION*) 
 
S11=1.0428*10^-5; 

 

 
 
(* ESTIMATION OF SCALE PARAMETER *)

ASSUMING ELASTIC AND STRENGTH ANISOTROPY 

specified, however, the solution assumes that the plate is thin and the displacements small.   The 

code was used to calculate the characteristic strengths of the NiAl specimens with the 

assumptions of elastic and strength anisotropy (i.e. section 5.3.3).    

 
ESTIMATION OF THE CHARACTERISTIC STRENGTH OF DISK TEST SPECIMENS 



 

 

S22=1.0428*10^-5; 
 S12=-0.421*10^-5; 
 S44=0.892*10^-5; 
 b11=S22/(S11*S22-S12^2); 
 b22=S11/(S11*S22-S12^2); 
 b12=-S12/(S11*S22-S12^2); 
 b66=1/S44; 
(* Plate stiffness in Okubu's Notation: *) 
 D1=h^3*S22/(12*(S11*S22-S12^2)); 
 D2=h^3*(-S12)/(12*(S11*S22-S12^2)); 
 D3=h^3*S11/(12*(S11*S22-S12^2)); 
 D4=h^3/(6*S44); 
 DD=(3*D1+2*D2+2*D4+3*D3)/8; 
 k=(7*D1+10*D2+6*D4+7*D3)/(2*(D1+2*D2+D3)); 
 x=(r^2/(1+Tan[t]^2))^0.5; 
 y=x*Tan[t]; 
 a=Rs; 
(* Cartesian Strains *) 
e11=h/2*(2*a^2*(k+1)-12*x^2-4*y^2)/(64*DD); 
 e22=h/2*(2*a^2*(k+1)-12*y^2-4*x^2)/(64*DD); 
 e6=-h*x*y/(8*DD); 
(* Cartesian Stresses *) 
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 Sig11=b11*e11+b12*e22; 
 Sig22=b12*e11+b22*e22; 
 Sig12=b66*e6; 
 Sig2=Sig11*Cos[t]^2+Sig22*Sin[t]^2+Sig12*Sin[2*t]; 
 Sig1=Sig22*Cos[t]^2+Sig11*Sin[t]^2-Sig12*Sin[2*t]; 
 SigMax=h*a^2*(k+1)/(64*DD)*(b11+b12); 
 
(* SCALE PARAMETER FUNCTION FOR PIA AND MAX PRINCIPAL FAILURE CRITERION *) 
 
SPpia1=2516*Cos[2*t]^2+1574*Sin[2*t]^2 
SPpia2=2516*Cos[2*t]^2+1574*Sin[2*t]^2 
f1pia=1 
f2pia=1 
 
(* ESTIMATION OF CHARACTERISTIC STRENGTH BY MAX PRINCIPAL CRITERION *) 
cspressdiskmaxprin=( 
      NIntegrate[ 
        NIntegrate[r*((Sig1*f1pia/(SPpia1*SigMax))^m),{r,0,Rs}],{t,0, 
          2*Pi}])^(-1/m) 
 
(* ESTIMATION OF CHARACTERISTIC STRENGTH BY PIA PRINCIPAL CRITERION *) 
 
cspressdiskpia=( 
      NIntegrate[ 
        NIntegrate[ 
          r*((Sig1*f1pia/(SPpia1*SigMax))^m+(Sig2*f2pia/(SPpia2*SigMax))^m),{ 
            r,0,Rs}],{t,0,2*Pi}])^(-1/m) 
 
(* SCALE PARAMETER FUNCTION FOR NORMAL STRESS CRITERION *) 
 



 

 

f1nor=Cos[t1]^2 
f2nor=Sin[t1]^2 
t2=t+t1 
SPnor=4038*Cos[2*t2]^2+976*Sin[2*t2]^2 
 
(* ESTIMATION OF CHARACTERISTIC STRENGTH BY NORMAL STRESS CRITERION *) 
 
cspressdisknormal=( 
      NIntegrate[ 
        8*NIntegrate[ 
            NIntegrate[ 
              r/Pi*((Sig1*f1nor+Sig2*f2nor)/(SPnor*SigMax))^m,{r,0,Rs}],{t,0, 
              Pi/4}],{t1,0,Pi}])^(-1/m) 
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